题名 | Fusing Panoptic Segmentation and Geometry Information for Robust Visual SLAM in Dynamic Environments |
作者 | |
通讯作者 | Jia,Zhenzhong |
DOI | |
发表日期 | 2022
|
ISSN | 2161-8070
|
EISSN | 2161-8089
|
ISBN | 978-1-6654-9043-6
|
会议录名称 | |
卷号 | 2022-August
|
页码 | 1648-1653
|
会议日期 | 20-24 Aug. 2022
|
会议地点 | Mexico City, Mexico
|
摘要 | Mobile robots need reliable maps for autonomous operation. Traditional SLAM systems, which are mainly developed for static scenes, often fail in dynamic environments with moving objects present in the scene. Learning based dynamic SLAM systems often suffer from insufficient or inaccurate identification of feature points. This paper proposes a novel real-time RGB-D SLAM system, which is targeted for dynamic environments, can further enhance feature detection and dynamic removal. This is done by fusing panoptic segmentation and geometry information. The system includes four components: dynamic segmentation that reduces the impact of moving objects, pose estimation with dynamic object removal, panoptic mapping, and loop closing. The pose estimation uses coarse-to-fine dynamic/static classification to further reduce the impact of unknown moving objects. Extensive evaluations demonstrate that our system can achieve robust performance in complex dynamic environments. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20224613111558
|
Scopus记录号 | 2-s2.0-85141676499
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9926478 |
引用统计 |
被引频次[WOS]:5
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/411877 |
专题 | 南方科技大学 |
作者单位 | 1.Southern University of Science and Technology (SUSTech),Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems,China 2.Guangdong Prov. Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities,Department of Mechanical and Energy Engineering,Shenzhen,518055,China |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Zhu,Hu,Yao,Chen,Zhu,Zheng,et al. Fusing Panoptic Segmentation and Geometry Information for Robust Visual SLAM in Dynamic Environments[C],2022:1648-1653.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论