中文版 | English
题名

An Improved Local Search Method for Large-Scale Hypervolume Subset Selection

作者
发表日期
2022
DOI
发表期刊
ISSN
1089-778X
EISSN
1941-0026
卷号PP期号:99页码:1-1
摘要
Hypervolume subset selection (HSS) has received considerable attention in the field of evolutionary multi-objective optimization (EMO). It aims to select a representative subset from a candidate solution set so that the hypervolume of the selected subset is maximized. A number of HSS methods have been proposed in the literature, attempting to either reduce the computation time of subset selection or improve the subset quality (i.e., the hypervolume of the selected subset). However, when selecting from a large candidate set (e.g., from hundreds of thousands of candidate solutions), most HSS methods fail to strike a balance between the computation time and the subset quality. In this paper, we propose a new local search HSS method and its extended version. Three strategies are proposed: The first two strategies are applied to the proposed method to obtain a good subset within a small computation time, and the third one is applied to the extended version to further improve the obtained subset. Experimental results on various candidate sets demonstrate that the proposed method and its extended version are much more efficient and effective than the existing HSS methods.
关键词
相关链接[Scopus记录]
收录类别
EI ; SCI
语种
英语
学校署名
第一
EI入藏号
20224613111867
EI主题词
Evolutionary algorithms ; Feature Selection ; Local search (optimization) ; Set theory
EI分类号
Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Optimization Techniques:921.5
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85141632353
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9940313
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/411884
专题工学院_计算机科学与工程系
作者单位
Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Braininspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Nan,Yang,Shang,Ke,Ishibuchi,Hisao,et al. An Improved Local Search Method for Large-Scale Hypervolume Subset Selection[J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION,2022,PP(99):1-1.
APA
Nan,Yang,Shang,Ke,Ishibuchi,Hisao,&He,Linjun.(2022).An Improved Local Search Method for Large-Scale Hypervolume Subset Selection.IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION,PP(99),1-1.
MLA
Nan,Yang,et al."An Improved Local Search Method for Large-Scale Hypervolume Subset Selection".IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION PP.99(2022):1-1.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Nan,Yang]的文章
[Shang,Ke]的文章
[Ishibuchi,Hisao]的文章
百度学术
百度学术中相似的文章
[Nan,Yang]的文章
[Shang,Ke]的文章
[Ishibuchi,Hisao]的文章
必应学术
必应学术中相似的文章
[Nan,Yang]的文章
[Shang,Ke]的文章
[Ishibuchi,Hisao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。