中文版 | English
题名

Effects of Archive Size on Computation Time and Solution Quality for Multi-Objective Optimization

作者
发表日期
2022
DOI
发表期刊
ISSN
1089-778X
EISSN
1941-0026
卷号PP期号:99页码:1-1
摘要
An unbounded external archive has been used to store all nondominated solutions found by an evolutionary multi-objective optimization algorithm in some studies. It has been shown that a selected solution subset from the stored solutions is often better than the final population. However, the use of the unbounded archive is not always realistic. When the number of examined solutions is huge, we must pre-specify the archive size. In this study, we examine the effects of the archive size on three aspects: (i) the quality of the selected final solution set, (ii) the total computation time for the archive maintenance and the final solution set selection, and (iii) the required memory size. Unsurprisingly, the increase of the archive size improves the final solution set quality. Interestingly, the total computation time of a medium-size archive is much larger than that of a small-size archive and a huge-size archive (e.g., an unbounded archive). To decrease the computation time, we examine two ideas: periodical archive update and archiving only in later generations. Compared with updating the archive at every generation, the first idea can obtain almost the same final solution set quality using a much shorter computation time at the cost of a slight increase of the memory size. The second idea drastically decreases the computation time at the cost of a slight deterioration of the final solution set quality. Based on our experimental results, some suggestions are given about how to appropriately choose an archiving strategy and an archive size.
关键词
相关链接[Scopus记录]
收录类别
EI ; SCI
语种
英语
学校署名
第一
EI入藏号
20224613111921
EI主题词
Feature Selection
EI分类号
Optimization Techniques:921.5
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85141623525
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9940299
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/411888
专题工学院_计算机科学与工程系
作者单位
Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Shu,Tianye,Shang,Ke,Ishibuchi,Hisao,et al. Effects of Archive Size on Computation Time and Solution Quality for Multi-Objective Optimization[J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION,2022,PP(99):1-1.
APA
Shu,Tianye,Shang,Ke,Ishibuchi,Hisao,&Nan,Yang.(2022).Effects of Archive Size on Computation Time and Solution Quality for Multi-Objective Optimization.IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION,PP(99),1-1.
MLA
Shu,Tianye,et al."Effects of Archive Size on Computation Time and Solution Quality for Multi-Objective Optimization".IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION PP.99(2022):1-1.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shu,Tianye]的文章
[Shang,Ke]的文章
[Ishibuchi,Hisao]的文章
百度学术
百度学术中相似的文章
[Shu,Tianye]的文章
[Shang,Ke]的文章
[Ishibuchi,Hisao]的文章
必应学术
必应学术中相似的文章
[Shu,Tianye]的文章
[Shang,Ke]的文章
[Ishibuchi,Hisao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。