中文版 | English
题名

Spectral Reweighting and Spectral Similarity Weighting for Sparse Hyperspectral Unmixing

作者
发表日期
2022
DOI
发表期刊
ISSN
1545-598X
EISSN
1558-0571
卷号PP期号:99页码:1-1
摘要
Sparse unmixing separates the pixel of hyperspectral images into a collection of pure spectral signatures and the associated fractional coefficients with a complete spectral library as a priori, avoiding the drawback of inaccurate extraction of endmember information from the original hyperspectral image. As a state-of-the-art sparse unmixing method, fast multiscale spatial regularization unmixing algorithm (MUA) consists of two procedures, concerning on the approximation image domain and the original domain, respectively. However, it ignores the inter-superpixel correlation of the original domain that each superpixel only involves a small number of spectral signatures, and ignores the spectral variability of the approximate image domain. We address these two issues by introducing two different weighting factors to enhance the unmixing result. The effectiveness of our proposed algorithm is demonstrated by the experimental results on both synthetic and real hyperspectral data. The code and datasets of this letter can be found at https://github.com/wangtaowei11/Unmixing-Algorithm.
关键词
相关链接[Scopus记录]
收录类别
EI ; SCI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China["62106044","62172059"] ; Natural Science Foundation of Jiangsu Province[BK20210221]
WOS研究方向
Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目
Geochemistry & Geophysics ; Engineering, Electrical & Electronic ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号
WOS:000886934400003
出版者
EI入藏号
20224613112893
EI主题词
Approximation algorithms ; Spectroscopy
EI分类号
Mathematics:921
Scopus记录号
2-s2.0-85141604807
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9944624
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/411890
专题工学院_计算机科学与工程系
作者单位
1.School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, China
2.Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, China
3.School of Computer Science and Engineering, Southeast University, Nanjing, China
推荐引用方式
GB/T 7714
Zhang,Dengyong,Wang,Taowei,Yang,Shujun,et al. Spectral Reweighting and Spectral Similarity Weighting for Sparse Hyperspectral Unmixing[J]. IEEE Geoscience and Remote Sensing Letters,2022,PP(99):1-1.
APA
Zhang,Dengyong,Wang,Taowei,Yang,Shujun,Jia,Yuheng,&Li,Feng.(2022).Spectral Reweighting and Spectral Similarity Weighting for Sparse Hyperspectral Unmixing.IEEE Geoscience and Remote Sensing Letters,PP(99),1-1.
MLA
Zhang,Dengyong,et al."Spectral Reweighting and Spectral Similarity Weighting for Sparse Hyperspectral Unmixing".IEEE Geoscience and Remote Sensing Letters PP.99(2022):1-1.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Dengyong]的文章
[Wang,Taowei]的文章
[Yang,Shujun]的文章
百度学术
百度学术中相似的文章
[Zhang,Dengyong]的文章
[Wang,Taowei]的文章
[Yang,Shujun]的文章
必应学术
必应学术中相似的文章
[Zhang,Dengyong]的文章
[Wang,Taowei]的文章
[Yang,Shujun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。