题名 | Spectral Reweighting and Spectral Similarity Weighting for Sparse Hyperspectral Unmixing |
作者 | |
发表日期 | 2022
|
DOI | |
发表期刊 | |
ISSN | 1545-598X
|
EISSN | 1558-0571
|
卷号 | PP期号:99页码:1-1 |
摘要 | Sparse unmixing separates the pixel of hyperspectral images into a collection of pure spectral signatures and the associated fractional coefficients with a complete spectral library as a priori, avoiding the drawback of inaccurate extraction of endmember information from the original hyperspectral image. As a state-of-the-art sparse unmixing method, fast multiscale spatial regularization unmixing algorithm (MUA) consists of two procedures, concerning on the approximation image domain and the original domain, respectively. However, it ignores the inter-superpixel correlation of the original domain that each superpixel only involves a small number of spectral signatures, and ignores the spectral variability of the approximate image domain. We address these two issues by introducing two different weighting factors to enhance the unmixing result. The effectiveness of our proposed algorithm is demonstrated by the experimental results on both synthetic and real hyperspectral data. The code and datasets of this letter can be found at https://github.com/wangtaowei11/Unmixing-Algorithm. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | National Natural Science Foundation of China["62106044","62172059"]
; Natural Science Foundation of Jiangsu Province[BK20210221]
|
WOS研究方向 | Geochemistry & Geophysics
; Engineering
; Remote Sensing
; Imaging Science & Photographic Technology
|
WOS类目 | Geochemistry & Geophysics
; Engineering, Electrical & Electronic
; Remote Sensing
; Imaging Science & Photographic Technology
|
WOS记录号 | WOS:000886934400003
|
出版者 | |
EI入藏号 | 20224613112893
|
EI主题词 | Approximation algorithms
; Spectroscopy
|
EI分类号 | Mathematics:921
|
Scopus记录号 | 2-s2.0-85141604807
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9944624 |
引用统计 |
被引频次[WOS]:6
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/411890 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, China 2.Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, China 3.School of Computer Science and Engineering, Southeast University, Nanjing, China |
推荐引用方式 GB/T 7714 |
Zhang,Dengyong,Wang,Taowei,Yang,Shujun,et al. Spectral Reweighting and Spectral Similarity Weighting for Sparse Hyperspectral Unmixing[J]. IEEE Geoscience and Remote Sensing Letters,2022,PP(99):1-1.
|
APA |
Zhang,Dengyong,Wang,Taowei,Yang,Shujun,Jia,Yuheng,&Li,Feng.(2022).Spectral Reweighting and Spectral Similarity Weighting for Sparse Hyperspectral Unmixing.IEEE Geoscience and Remote Sensing Letters,PP(99),1-1.
|
MLA |
Zhang,Dengyong,et al."Spectral Reweighting and Spectral Similarity Weighting for Sparse Hyperspectral Unmixing".IEEE Geoscience and Remote Sensing Letters PP.99(2022):1-1.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论