中文版 | English
题名

ST-TrackNet: A Multiple-Object Tracking Network Using Spatio-Temporal Information

作者
发表日期
2022
DOI
发表期刊
ISSN
1545-5955
EISSN
1558-3783
卷号PP期号:99页码:1-12
摘要
Multiple-object tracking (MOT) is a crucial component in autonomous driving systems. However, inaccurate object detection is always the bottleneck for MOT. Most detectors are not designed to take the temporal information across consecutive frames into consideration. To take advantage of such information, we design a novel data representation, the spatio-temporal (ST) map, which collects a batch of detection results spatio-temporally, and we train a novel network, ST-TrackNet, to assign predicted track IDs to each positive detection across a sequence. With our ST map detection fed into the tracker, the correlation of objects between adjacent frames becomes prominent, which improves the performance of the tracker in the data association step. Moreover, the long-term trajectory in a sequence also helps to refine the detection results. We train and evaluate our network on the KITTI dataset, a CARLA simulation dataset, and a dataset recorded in a factory environment. Our approach generally achieves superior performance over the state-of-the-art. Note to Practitioners—We investigate the MOT problem in this paper. A spatio-temporal pipeline is proposed to provide a solution to this problem. Object detection results produced by off-the-shelf object detectors are used to form the proposed ST maps. In low signal-to-noise ratio (SNR) situations, our proposed framework can achieve more accurate and robust tracking results with more false-positives. Due to the simplicity and modular design of our framework, it can be applied directly after the detection stage to achieve the online tracking task. The proposed method is evaluated on several datasets, and the experimental results demonstrate its effectiveness. Our method can also be used for other autonomous driving applications, such as path planning and trajectory prediction.
关键词
相关链接[Scopus记录]
收录类别
EI ; SCI
语种
英语
学校署名
其他
EI入藏号
20224613110850
EI主题词
Autonomous vehicles ; Deep learning ; Motion planning ; Object detection ; Object recognition ; Signal to noise ratio ; Tracking (position) ; Trajectories
EI分类号
Highway Transportation:432 ; Ergonomics and Human Factors Engineering:461.4 ; Information Theory and Signal Processing:716.1 ; Data Processing and Image Processing:723.2 ; Robot Applications:731.6
Scopus记录号
2-s2.0-85141602914
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9933424
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/411892
专题工学院_机械与能源工程系
工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
2.Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
3.Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
4.The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, China
推荐引用方式
GB/T 7714
Wang,Sukai,Sun,Yuxiang,Wang,Zheng,et al. ST-TrackNet: A Multiple-Object Tracking Network Using Spatio-Temporal Information[J]. IEEE Transactions on Automation Science and Engineering,2022,PP(99):1-12.
APA
Wang,Sukai,Sun,Yuxiang,Wang,Zheng,&Liu,Ming.(2022).ST-TrackNet: A Multiple-Object Tracking Network Using Spatio-Temporal Information.IEEE Transactions on Automation Science and Engineering,PP(99),1-12.
MLA
Wang,Sukai,et al."ST-TrackNet: A Multiple-Object Tracking Network Using Spatio-Temporal Information".IEEE Transactions on Automation Science and Engineering PP.99(2022):1-12.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Sukai]的文章
[Sun,Yuxiang]的文章
[Wang,Zheng]的文章
百度学术
百度学术中相似的文章
[Wang,Sukai]的文章
[Sun,Yuxiang]的文章
[Wang,Zheng]的文章
必应学术
必应学术中相似的文章
[Wang,Sukai]的文章
[Sun,Yuxiang]的文章
[Wang,Zheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。