题名 | ST-TrackNet: A Multiple-Object Tracking Network Using Spatio-Temporal Information |
作者 | |
发表日期 | 2022
|
DOI | |
发表期刊 | |
ISSN | 1545-5955
|
EISSN | 1558-3783
|
卷号 | PP期号:99页码:1-12 |
摘要 | Multiple-object tracking (MOT) is a crucial component in autonomous driving systems. However, inaccurate object detection is always the bottleneck for MOT. Most detectors are not designed to take the temporal information across consecutive frames into consideration. To take advantage of such information, we design a novel data representation, the spatio-temporal (ST) map, which collects a batch of detection results spatio-temporally, and we train a novel network, ST-TrackNet, to assign predicted track IDs to each positive detection across a sequence. With our ST map detection fed into the tracker, the correlation of objects between adjacent frames becomes prominent, which improves the performance of the tracker in the data association step. Moreover, the long-term trajectory in a sequence also helps to refine the detection results. We train and evaluate our network on the KITTI dataset, a CARLA simulation dataset, and a dataset recorded in a factory environment. Our approach generally achieves superior performance over the state-of-the-art. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
EI入藏号 | 20224613110850
|
EI主题词 | Autonomous vehicles
; Deep learning
; Motion planning
; Object detection
; Object recognition
; Signal to noise ratio
; Tracking (position)
; Trajectories
|
EI分类号 | Highway Transportation:432
; Ergonomics and Human Factors Engineering:461.4
; Information Theory and Signal Processing:716.1
; Data Processing and Image Processing:723.2
; Robot Applications:731.6
|
Scopus记录号 | 2-s2.0-85141602914
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9933424 |
引用统计 |
被引频次[WOS]:5
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/411892 |
专题 | 工学院_机械与能源工程系 工学院_计算机科学与工程系 |
作者单位 | 1.Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, China 2.Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, Hong Kong 3.Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China 4.The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, China |
推荐引用方式 GB/T 7714 |
Wang,Sukai,Sun,Yuxiang,Wang,Zheng,et al. ST-TrackNet: A Multiple-Object Tracking Network Using Spatio-Temporal Information[J]. IEEE Transactions on Automation Science and Engineering,2022,PP(99):1-12.
|
APA |
Wang,Sukai,Sun,Yuxiang,Wang,Zheng,&Liu,Ming.(2022).ST-TrackNet: A Multiple-Object Tracking Network Using Spatio-Temporal Information.IEEE Transactions on Automation Science and Engineering,PP(99),1-12.
|
MLA |
Wang,Sukai,et al."ST-TrackNet: A Multiple-Object Tracking Network Using Spatio-Temporal Information".IEEE Transactions on Automation Science and Engineering PP.99(2022):1-12.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论