中文版 | English
题名

Multi-Domain Active Learning: Literature Review and Comparative Study

作者
发表日期
2022
DOI
发表期刊
ISSN
2471-285X
EISSN
2471-285X
卷号PP期号:99页码:1-14
摘要
Multi-domain learning (MDL) refers to learning a set of models simultaneously, where each model is specialized to perform a task in a particular domain. Generally, a high labeling effort is required in MDL, as data needs to be labeled by human experts for every domain. Active learning (AL) can be utilized in MDL to reduce the labeling effort by only using the most informative data. The resultant paradigm is termed multi-domain active learning (MDAL). In this work, we provide an exhaustive literature review for MDAL on the relevant fields, including AL, cross-domain information sharing schemes, and cross-domain instance evaluation approaches. It is found that the few studies which have been directly conducted on MDAL cannot serve as off-the-shelf solutions on more general MDAL tasks. To fill this gap, we construct a pipeline of MDAL and present a comprehensive comparative study of thirty different algorithms, which are established by combining six representative MDL models and five commonly used AL strategies. We evaluate the algorithms on six datasets involving textual and visual classification tasks. In most cases, AL brings notable improvements to MDL, and the naive BvSB (best vs. second best) Uncertainty strategy can perform competitively with the state-of-the-art AL strategies. Besides, BvSB with the MAN (multinomial adversarial networks) model can consistently achieve top or above-average performance on all the datasets. Furthermore, we qualitatively analyze the behaviors of the well-performed strategies and models, shedding light on their superior performance in the comparison. Finally, we recommend using BvSB with the MAN model in the application of MDAL due to their good performance in the experiments.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
资助项目
Guangdong Provincial Key Laboratory[2020B121201001] ; Program for Guangdong Introducing Innovative and Entrepreneurial Teams[2017ZT07X386]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000881958100001
出版者
EI入藏号
20224613123214
EI主题词
Artificial intelligence ; Classification (of information) ; Data structures ; Job analysis ; Labeling ; Learning systems
EI分类号
Packaging, General:694.1 ; Information Theory and Signal Processing:716.1 ; Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4 ; Information Sources and Analysis:903.1 ; Probability Theory:922.1
Scopus记录号
2-s2.0-85141562255
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9942709
引用统计
被引频次[WOS]:7
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/411903
专题工学院_计算机科学与工程系
作者单位
1.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
2.School of Computer Science, University of Birmingham, Birmingham, U.K
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
He,Rui,Liu,Shengcai,He,Shan,et al. Multi-Domain Active Learning: Literature Review and Comparative Study[J]. IEEE Transactions on Emerging Topics in Computational Intelligence,2022,PP(99):1-14.
APA
He,Rui,Liu,Shengcai,He,Shan,&Tang,Ke.(2022).Multi-Domain Active Learning: Literature Review and Comparative Study.IEEE Transactions on Emerging Topics in Computational Intelligence,PP(99),1-14.
MLA
He,Rui,et al."Multi-Domain Active Learning: Literature Review and Comparative Study".IEEE Transactions on Emerging Topics in Computational Intelligence PP.99(2022):1-14.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[He,Rui]的文章
[Liu,Shengcai]的文章
[He,Shan]的文章
百度学术
百度学术中相似的文章
[He,Rui]的文章
[Liu,Shengcai]的文章
[He,Shan]的文章
必应学术
必应学术中相似的文章
[He,Rui]的文章
[Liu,Shengcai]的文章
[He,Shan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。