中文版 | English
题名

Towards Large-Scale Graph-Based Traffic Forecasting: A Data-Driven Network Partitioning Approach

作者
发表日期
2022
DOI
发表期刊
ISSN
2372-2541
EISSN
2327-4662
卷号PP期号:99页码:1-1
摘要
Network partitioning is recognized as an effective auxiliary approach for solving transportation tasks on large-scale traffic networks in a domain-decomposition manner. Most of the existing related partitioning algorithms are explicitly designed to traffic management problems and merely focus on the implied topology of the networks. In this paper, towards the practical problems that happened to traffic forecasting tasks, we propose a network-partitioning-based domain-decomposition framework to improve GCN-based predictors’ performance on large-scale transportation networks. Particularly, we devise a data-driven network-partitioning approach, namely, Speed-Matching-Partitioning, which employs not only the topological features but also the traffic speed observations of traffic networks for partitioning. Additionally, we propose a data-parallel training strategy that feeds partitioned sub-networks into independent predictors for parallel training. The proposed approach is tested by comprehensive case studies on three real-world datasets to evaluate its effectiveness. The results indicate that the proposed approach can help improve GCN-based predictors’ accuracy and training efficiency on both small and relatively large traffic datasets. Furthermore, we investigate the model sensitivity to the selection of graph representations and framework parameters, and the learning efficiency of the data-parallel training strategy.
关键词
相关链接[Scopus记录]
收录类别
EI ; SCI
语种
英语
学校署名
其他
资助项目
Stable Support Plan Program of Shenzhen Natural Science Fund[20200925155105002] ; General Program of Guangdong Basic and Applied Basic Research Foundation[2019A1515011032] ; Guangdong Provincial Key Laboratory[2020B121201001] ; Australian Research Council (ARC)["DP200101374","LP190100676"]
WOS研究方向
Computer Science ; Engineering ; Telecommunications
WOS类目
Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号
WOS:000938278700057
出版者
EI入藏号
20224613110260
EI主题词
Efficiency ; Graph neural networks ; Graphic methods ; Internet of things ; Job analysis ; Large dataset ; Scalability ; Topology
EI分类号
Data Communication, Equipment and Techniques:722.3 ; Computer Software, Data Handling and Applications:723 ; Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4 ; Production Engineering:913.1 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Systems Science:961
Scopus记录号
2-s2.0-85141555070
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9935122
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/411905
专题工学院_计算机科学与工程系
作者单位
1.Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, Australia
2.Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
3.Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
推荐引用方式
GB/T 7714
Zhang,Chenhan,Zhang,Shuyu,Zou,Xiexin,et al. Towards Large-Scale Graph-Based Traffic Forecasting: A Data-Driven Network Partitioning Approach[J]. IEEE Internet of Things Journal,2022,PP(99):1-1.
APA
Zhang,Chenhan,Zhang,Shuyu,Zou,Xiexin,Yu,Shui,&Yu,James J.Q..(2022).Towards Large-Scale Graph-Based Traffic Forecasting: A Data-Driven Network Partitioning Approach.IEEE Internet of Things Journal,PP(99),1-1.
MLA
Zhang,Chenhan,et al."Towards Large-Scale Graph-Based Traffic Forecasting: A Data-Driven Network Partitioning Approach".IEEE Internet of Things Journal PP.99(2022):1-1.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Chenhan]的文章
[Zhang,Shuyu]的文章
[Zou,Xiexin]的文章
百度学术
百度学术中相似的文章
[Zhang,Chenhan]的文章
[Zhang,Shuyu]的文章
[Zou,Xiexin]的文章
必应学术
必应学术中相似的文章
[Zhang,Chenhan]的文章
[Zhang,Shuyu]的文章
[Zou,Xiexin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。