中文版 | English
题名

Sustainable and Transferable Traffic Sign Recognition for Intelligent Transportation Systems

作者
通讯作者Li,Dachuan
发表日期
2022
DOI
发表期刊
ISSN
1524-9050
EISSN
1558-0016
卷号PP期号:99页码:1-11
摘要

Traffic Sign Recognition (TSR) is an essential component of Intelligent Transportation Systems (ITS) and intelligent vehicles. TSR systems based on deep learning have grown in popularity in recent years. However, since these models belong to the closed-world-oriented learning paradigm, they are only capable of accurately identifying traffic signs that are easy to collect and cannot adapt to the real world. Furthermore, the sample utilization of these methods is insufficient, the resource consumption of model training may become unbearable as the data scale grows. To address this problem, we propose a novel “knowledge $+$ data” co-driven solution (i.e., Joint Semantic Representation algorithm, JSR) for TSR. JSR creates a hybrid feature representation by extracting general and principal visual features from traffic sign images. It also realizes the model’s reasoning ability to zero-shot TSR based on prior knowledge of traffic sign design standards. The effectiveness of JSR is demonstrated by experiments on four benchmark datasets and two self-built TSR datasets.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
EI入藏号
20224513094325
EI主题词
Data visualization ; Deep learning ; Intelligent systems ; Intelligent vehicle highway systems ; Pattern recognition ; Semantics ; Zero-shot learning
EI分类号
Highway Systems:406.1 ; Highway Traffic Control:432.4 ; Ergonomics and Human Factors Engineering:461.4 ; Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4 ; Computer Applications:723.5
ESI学科分类
ENGINEERING
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9931533
引用统计
被引频次[WOS]:10
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/411916
专题工学院_斯发基斯可信自主研究院
工学院_计算机科学与工程系
作者单位
1.Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, China
2.Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
3.Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, China
4.School of Computer Science, Shenyang Aerospace University, Shenyang, China
5.Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
通讯作者单位斯发基斯可信自主系统研究院
推荐引用方式
GB/T 7714
Cao,Weipeng,Wu,Yuhao,Chakraborty,Chinmay,et al. Sustainable and Transferable Traffic Sign Recognition for Intelligent Transportation Systems[J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,2022,PP(99):1-11.
APA
Cao,Weipeng,Wu,Yuhao,Chakraborty,Chinmay,Li,Dachuan,Zhao,Liang,&Ghosh,Soumya Kanti.(2022).Sustainable and Transferable Traffic Sign Recognition for Intelligent Transportation Systems.IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,PP(99),1-11.
MLA
Cao,Weipeng,et al."Sustainable and Transferable Traffic Sign Recognition for Intelligent Transportation Systems".IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS PP.99(2022):1-11.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cao,Weipeng]的文章
[Wu,Yuhao]的文章
[Chakraborty,Chinmay]的文章
百度学术
百度学术中相似的文章
[Cao,Weipeng]的文章
[Wu,Yuhao]的文章
[Chakraborty,Chinmay]的文章
必应学术
必应学术中相似的文章
[Cao,Weipeng]的文章
[Wu,Yuhao]的文章
[Chakraborty,Chinmay]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。