中文版 | English
题名

Tight Exponential Analysis for Smoothing the Max-Relative Entropy and for Quantum Privacy Amplification

作者
发表日期
2022
DOI
发表期刊
ISSN
0018-9448
EISSN
1557-9654
卷号PP期号:99页码:1-1
摘要
The max-relative entropy together with its smoothed version is a basic tool in quantum information theory. In this paper, we derive the exact exponent for the asymptotic decay of the small modification of the quantum state in smoothing the max-relative entropy based on purified distance. We then apply this result to the problem of privacy amplification against quantum side information, and we obtain an upper bound for the exponent of the asymptotic decreasing of the insecurity, measured using either purified distance or relative entropy. Our upper bound complements the earlier lower bound established by Hayashi, and the two bounds match when the rate of randomness extraction is above a critical value. Thus, for the case of high rate, we have determined the exact security exponent. Following this, we give examples and show that in the low-rate case, neither the upper bound nor the lower bound is tight in general. This exhibits a picture similar to that of the error exponent in channel coding. Lastly, we investigate the asymptotics of equivocation and its exponent under the security measure using the sandwiched Rényi divergence of order s ϵ (1, 2], which has not been addressed previously in the quantum setting.
关键词
相关链接[Scopus记录]
收录类别
EI ; SCI
语种
英语
学校署名
其他
EI入藏号
20224513094115
EI主题词
Behavioral research ; Information theory ; Purification ; Quantum optics
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Thermodynamics:641.1 ; Information Theory and Signal Processing:716.1 ; Light/Optics:741.1 ; Quantum Theory; Quantum Mechanics:931.4 ; Social Sciences:971
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85141479117
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9931746
引用统计
被引频次[WOS]:10
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/411918
专题量子科学与工程研究院
理学院_物理系
作者单位
1.Institute for Advanced Study in Mathematics, Harbin Institute of Technology, Nangang District, Harbin, China
2.Institute for Advanced Study in Mathematics, School of Mathematics, Harbin Institute of Technology, Nangang District, Harbin, China
3.Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, China
推荐引用方式
GB/T 7714
Li,Ke,Yao,Yongsheng,Hayashi,Masahito. Tight Exponential Analysis for Smoothing the Max-Relative Entropy and for Quantum Privacy Amplification[J]. IEEE TRANSACTIONS ON INFORMATION THEORY,2022,PP(99):1-1.
APA
Li,Ke,Yao,Yongsheng,&Hayashi,Masahito.(2022).Tight Exponential Analysis for Smoothing the Max-Relative Entropy and for Quantum Privacy Amplification.IEEE TRANSACTIONS ON INFORMATION THEORY,PP(99),1-1.
MLA
Li,Ke,et al."Tight Exponential Analysis for Smoothing the Max-Relative Entropy and for Quantum Privacy Amplification".IEEE TRANSACTIONS ON INFORMATION THEORY PP.99(2022):1-1.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Ke]的文章
[Yao,Yongsheng]的文章
[Hayashi,Masahito]的文章
百度学术
百度学术中相似的文章
[Li,Ke]的文章
[Yao,Yongsheng]的文章
[Hayashi,Masahito]的文章
必应学术
必应学术中相似的文章
[Li,Ke]的文章
[Yao,Yongsheng]的文章
[Hayashi,Masahito]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。