题名 | Tight Exponential Analysis for Smoothing the Max-Relative Entropy and for Quantum Privacy Amplification |
作者 | |
发表日期 | 2022
|
DOI | |
发表期刊 | |
ISSN | 0018-9448
|
EISSN | 1557-9654
|
卷号 | PP期号:99页码:1-1 |
摘要 | The max-relative entropy together with its smoothed version is a basic tool in quantum information theory. In this paper, we derive the exact exponent for the asymptotic decay of the small modification of the quantum state in smoothing the max-relative entropy based on purified distance. We then apply this result to the problem of privacy amplification against quantum side information, and we obtain an upper bound for the exponent of the asymptotic decreasing of the insecurity, measured using either purified distance or relative entropy. Our upper bound complements the earlier lower bound established by Hayashi, and the two bounds match when the rate of randomness extraction is above a critical value. Thus, for the case of high rate, we have determined the exact security exponent. Following this, we give examples and show that in the low-rate case, neither the upper bound nor the lower bound is tight in general. This exhibits a picture similar to that of the error exponent in channel coding. Lastly, we investigate the asymptotics of equivocation and its exponent under the security measure using the sandwiched Rényi divergence of order |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
EI入藏号 | 20224513094115
|
EI主题词 | Behavioral research
; Information theory
; Purification
; Quantum optics
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Thermodynamics:641.1
; Information Theory and Signal Processing:716.1
; Light/Optics:741.1
; Quantum Theory; Quantum Mechanics:931.4
; Social Sciences:971
|
ESI学科分类 | COMPUTER SCIENCE
|
Scopus记录号 | 2-s2.0-85141479117
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9931746 |
引用统计 |
被引频次[WOS]:10
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/411918 |
专题 | 量子科学与工程研究院 理学院_物理系 |
作者单位 | 1.Institute for Advanced Study in Mathematics, Harbin Institute of Technology, Nangang District, Harbin, China 2.Institute for Advanced Study in Mathematics, School of Mathematics, Harbin Institute of Technology, Nangang District, Harbin, China 3.Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, China |
推荐引用方式 GB/T 7714 |
Li,Ke,Yao,Yongsheng,Hayashi,Masahito. Tight Exponential Analysis for Smoothing the Max-Relative Entropy and for Quantum Privacy Amplification[J]. IEEE TRANSACTIONS ON INFORMATION THEORY,2022,PP(99):1-1.
|
APA |
Li,Ke,Yao,Yongsheng,&Hayashi,Masahito.(2022).Tight Exponential Analysis for Smoothing the Max-Relative Entropy and for Quantum Privacy Amplification.IEEE TRANSACTIONS ON INFORMATION THEORY,PP(99),1-1.
|
MLA |
Li,Ke,et al."Tight Exponential Analysis for Smoothing the Max-Relative Entropy and for Quantum Privacy Amplification".IEEE TRANSACTIONS ON INFORMATION THEORY PP.99(2022):1-1.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论