题名 | Adaptive Graph Convolutional Network-Based Distribution System State Estimation |
作者 | |
通讯作者 | Jia,Youwei |
DOI | |
发表日期 | 2022
|
ISSN | 1944-9925
|
EISSN | 1944-9933
|
ISBN | 978-1-6654-0824-0
|
会议录名称 | |
卷号 | 2022-July
|
页码 | 1-5
|
会议日期 | 17-21 July 2022
|
会议地点 | Denver, CO, USA
|
摘要 | The management and control of the power systems rely on reliable and timely distribution system state estimation, which is present to be challenging due to significant voltage variations caused by high renewables. To tackle this problem, a graph convolutional network (AGCN) is proposed for the distribution system state estimation (DSSE) by considering highly volatile renewable generation. In particular, the AGCN can enable prompt state estimation for viable system states. In the proposed model, the graph convolutional layer can capture the correlations of the nodal power injections so that enhanced estimation accuracy can be achieved. Moreover, the node-embedding technique is employed in the graph convolutional layer to represent the nonlinear correlation nature, through which the proposed model is allowed to cover general scenarios in the application. The simulation results have been provided to verify the accuracy and effectiveness of the proposed model through IEEE 33-node and the 118-node distribution systems. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
Scopus记录号 | 2-s2.0-85141451299
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9916969 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/411923 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Southern University of Science and Technology,Department of Electrical and Electronic Engineering,Shenzhen,China 2.The Hong Kong Polytechnic University,Department of Electrical Engineering,Hong Kong |
第一作者单位 | 电子与电气工程系 |
通讯作者单位 | 电子与电气工程系 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Wu,Huayi,Jia,Youwei,Xu,Zhao. Adaptive Graph Convolutional Network-Based Distribution System State Estimation[C],2022:1-5.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论