中文版 | English
题名

Two-stage broad learning inversion framework for shear-wave velocity estimation

作者
通讯作者Peng,Han
发表日期
2023-02-01
DOI
发表期刊
ISSN
0016-8033
EISSN
1942-2156
卷号88期号:1页码:WA219-WA237
摘要
Shear-wave (S-wave) velocity is considered an essential parameter for the study of the earth, and Rayleigh wave inversion has been widely accepted and used to determine it. Given high -quality measured dispersion curves, the inversion performance depends on the applied optimization algorithm inside the inver-sion process. We propose a novel inversion framework to pro-mote efficient and accurate inversion, i.e., a two-stage broad learning inversion framework (TS-BL). The proposed TS-BL not only inherits the powerful mapping capability and simple con-figured structure of broad learning (BL) network but also makes two significant improvements to better acclimatize itself to Ray-leigh wave inversion. First, TS-BL adopts a two-stage inversion strategy to perform optimizing two times. It does not yield the same search space in the two inversion stages. In the first stage, because the inversion aims to find an approximation rather than the accurate value of model parameters, the difficulty in con-structing the mapping model is reduced by sacrificing accuracy. Then, an effective BL network can be established using smaller sample sizes. In the second stage, the search space becomes much narrower, commencing with the approximation results obtained in the prior stage. This helps the final BL network to easily and quickly model the actual relationship between measured dispersion curves and unknown model parameters. After that, the forward modeling of measurements rather than the validation data set is exploited for tuning the network's hyperparameters. The physical model is superior to the validation data set for se-lecting a suitable network complexity to adapt to the measured dispersion curves because the latter only describes an overall re-lationship. As a result, accurate S-wave velocities can be effi-ciently acquired by using the proposed TS-BL with a low cost of training samples. The efficiency and reliability of TS-BL have been demonstrated in numerical and field data examples.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Key Special Project for Intro- duced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)[GML2019ZD0203] ; Shenzhen Key Laboratory of Deep Offshore Oil and Gas Exploration Technol- ogy[ZDSYS20190902093007855] ; Science and Tech- nology Program of Shenzhen["JCYJ20210324104602006","JCYJ20210324104801004"]
WOS研究方向
Geochemistry & Geophysics
WOS类目
Geochemistry & Geophysics
WOS记录号
WOS:000944291200003
出版者
EI入藏号
20230213358362
EI主题词
Curve fitting ; Dispersion (waves) ; Mapping ; Shear flow ; Shear waves ; Wave propagation
EI分类号
Surveying:405.3 ; Seismology:484 ; Fluid Flow, General:631.1 ; Numerical Methods:921.6 ; Mechanics:931.1
ESI学科分类
GEOSCIENCES
来源库
Web of Science
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/411965
专题理学院_地球与空间科学系
作者单位
1.Shenzhen Key Laboratory of Deep Offshore Oil and Gas Exploration Technology, Southern University of Science and Technology, Shenzhen, 518055, China
2.Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
3.Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
第一作者单位地球与空间科学系
通讯作者单位地球与空间科学系
推荐引用方式
GB/T 7714
Xiao-Hui,Yang,Peng,Han,Zhentao,Yang,et al. Two-stage broad learning inversion framework for shear-wave velocity estimation[J]. GEOPHYSICS,2023,88(1):WA219-WA237.
APA
Xiao-Hui,Yang,Peng,Han,Zhentao,Yang,&Xiaofei,Chen.(2023).Two-stage broad learning inversion framework for shear-wave velocity estimation.GEOPHYSICS,88(1),WA219-WA237.
MLA
Xiao-Hui,Yang,et al."Two-stage broad learning inversion framework for shear-wave velocity estimation".GEOPHYSICS 88.1(2023):WA219-WA237.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Yang et al. - 2022 -(7730KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xiao-Hui,Yang]的文章
[Peng,Han]的文章
[Zhentao,Yang]的文章
百度学术
百度学术中相似的文章
[Xiao-Hui,Yang]的文章
[Peng,Han]的文章
[Zhentao,Yang]的文章
必应学术
必应学术中相似的文章
[Xiao-Hui,Yang]的文章
[Peng,Han]的文章
[Zhentao,Yang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。