中文版 | English
题名

A Multi-modal Clinical Dataset for Critically-Ill and Premature Infant Monitoring: EEG and Videos

作者
DOI
发表日期
2022
ISSN
2641-3590
ISBN
978-1-6654-8792-4
会议录名称
页码
1-5
会议日期
27-30 Sept. 2022
会议地点
Ioannina, Greece
摘要
The comprehensive monitoring of cardio-respiratory and neurological events of premature infants is desired for the Neonatal Intensive Care Unit (NICU). Video-based infant monitoring is an emerging tool for NICU as it eliminates skin irritations and enables new measurements like pain assessment. A multi-modal clinical dataset across the measurement of EEG and videos will be helpful in developing novel monitoring solutions for infant care. In this paper, we created such a dataset by simultaneously collecting the EEG signals and videos data from critically ill and preterm infants in NICU. Along with the recordings, we used the video-based cardio-respiratory measurements (heart rate and respiratory rate) to examine the validity of video recordings. We employed a classical video-based physiological measurement framework called Spatial Redundancy in combination with living-skin detection to measure the vital signs of recorded infants. The pilot measurements show the feasibility as well as the challenges that need to be addressed in algorithmic design in the next step. The dataset will be made publicly available to facilitate the research in this area. It will be useful for studying the video-based infant monitoring and its fusion with EEG, which may lead to new measurements such as a neonatal PSG for infant sleep staging and disease analysis (e.g. neonatal encephalopathy, neonatal respiratory distress syndrome).
关键词
学校署名
第一
相关链接[IEEE记录]
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9926840
引用统计
被引频次[WOS]:7
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/412118
专题工学院_生物医学工程系
作者单位
1.Department of Biomedical Engineering, Southern University of Science and Technology, China
2.Neonatal Intensive Care Unit, Nanfang Hospital of Southern Medical University, China
第一作者单位生物医学工程系
第一作者的第一单位生物医学工程系
推荐引用方式
GB/T 7714
Yongshen Zeng,Xiaoyan Song,Hongwu Chen,et al. A Multi-modal Clinical Dataset for Critically-Ill and Premature Infant Monitoring: EEG and Videos[C],2022:1-5.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yongshen Zeng]的文章
[Xiaoyan Song]的文章
[Hongwu Chen]的文章
百度学术
百度学术中相似的文章
[Yongshen Zeng]的文章
[Xiaoyan Song]的文章
[Hongwu Chen]的文章
必应学术
必应学术中相似的文章
[Yongshen Zeng]的文章
[Xiaoyan Song]的文章
[Hongwu Chen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。