中文版 | English
题名

Combating spatial redundancy with spectral norm attention in convolutional learners

作者
通讯作者Liu, Jiang
发表日期
2022-10-28
DOI
发表期刊
ISSN
0925-2312
EISSN
1872-8286
卷号511
摘要

There is an inherent and longstanding challenge for vision learners to exploit informative features from digital images with spatial redundancy. Given pre-processing image methods require task-specific customization and may rise unanticipated poor performance due to redundancy removal, we explore improving vision learners to combat spatial redundancy during vision learning, a task-agnostic and robust solution. Among popular vision learners, vision transformers with self-attention can mitigate pixel redundancy by capturing global dependencies, while convolutional learners fall into locality via a limited receptive field. To this end, based on investigating inter-pixel spatial redundancy of images, in this work, we propose spectral norm attention (SNA), a novel yet efficient attention block to help convolutional neural networks (CNNs) highlight informative features. We can seamlessly plug SNA into off-the-shelf CNNs to suppress the contributions of redundant features by globally differentiating and weighting. In particular, SNA performs singular value decomposition (SVD) on intermediate features of each image within a mini-batch to obtain its spectral norm. The features in the direction of the spectral norm are most informative, while the discriminative features in other directions leave less. Hence, we apply the rank-one approximation of the spectral norm direction as attention weights to enhance informative features. Besides, we adopt the power iteration algorithm to approximate the spectral norm to significantly reduce the matrix computation overhead during training, thus keeping inference speed on par with vanilla CNNs. We extensively evaluate our SNA on four mainstream natural datasets to demonstrate the effectiveness and favourability of our SNA against its counterparts. In addition, the experimental results of image classification and object detection show our SNA can bring more gains to medical images with heavy redundancy than other state-of-the-art attention modules. (C) 2022 Elsevier B.V. All rights reserved.

关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000871948700009
出版者
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/412128
专题工学院_计算机科学与工程系
工学院_斯发基斯可信自主研究院
作者单位
1.Harbin Inst Technol, Sch Comp Sci & Technol, Harbin, Peoples R China
2.Southern Univ Sci & Technol, Res Inst Trustworthy Autonomous Syst, Shenzhen, Peoples R China
3.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China
4.CVTE Res, Guangzhou, Peoples R China
通讯作者单位南方科技大学;  计算机科学与工程系
推荐引用方式
GB/T 7714
Fang, Jiansheng,Zeng, Dan,Yan, Xiao,et al. Combating spatial redundancy with spectral norm attention in convolutional learners[J]. NEUROCOMPUTING,2022,511.
APA
Fang, Jiansheng.,Zeng, Dan.,Yan, Xiao.,Zhang, Yubing.,Liu, Hongbo.,...&Liu, Jiang.(2022).Combating spatial redundancy with spectral norm attention in convolutional learners.NEUROCOMPUTING,511.
MLA
Fang, Jiansheng,et al."Combating spatial redundancy with spectral norm attention in convolutional learners".NEUROCOMPUTING 511(2022).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
2022Neurocomputing.p(2461KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Fang, Jiansheng]的文章
[Zeng, Dan]的文章
[Yan, Xiao]的文章
百度学术
百度学术中相似的文章
[Fang, Jiansheng]的文章
[Zeng, Dan]的文章
[Yan, Xiao]的文章
必应学术
必应学术中相似的文章
[Fang, Jiansheng]的文章
[Zeng, Dan]的文章
[Yan, Xiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。