题名 | Spectrum and Style Transformation Framework for Omni-Domain COVID-19 Diagnosis |
作者 | |
通讯作者 | Hu, Xiaowei; Xu, Xiaowei |
共同第一作者 | Wang, Zhenkun; Gui, Shuangchun |
发表日期 | 2023-10
|
DOI | |
发表期刊 | |
ISSN | 2471-285X
|
卷号 | 7期号:5页码:1527-1538 |
摘要 | Coronavirus disease 2019 (COVID-19) is an ongoing global pandemic and profoundly affects almost all people around the world. Thus, many automatic diagnosis methods based on computed tomography (CT) images have been proposed to reduce the workload of radiologists. Most of the existing methods focus on the in-domain predictions, i.e., the training and testing have similar distributions, which is impractical in real-world situations, since the CT images can be collected from different devices and in different hospitals. To improve the diagnosis performance of COVID-19 for both in-domain and out-of-domain data, this paper proposes a spectrum and style transformation framework for omni-domain COVID-19 diagnosis. To achieve this, we first present a spectrum transform module, which helps to discover the discriminating features of each domain to recognize the in-domain data. Then, we formulate a cross-domain stylization module, which learns the cross-domain knowledge to enhance the model generalization capability to deal with out-of-domain data. Moreover, our framework is a plug-and-play module that can be easily integrated into existing deep models. We evaluate our framework on four COVID-19 datasets and show our method consistently improves the diagnosis performance of various methods on both in-domain and out-of-domain data. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 共同第一
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
|
WOS记录号 | WOS:000886903000001
|
出版者 | |
EI入藏号 | 20224813194813
|
EI主题词 | Computer aided diagnosis
; Computerized tomography
; Data structures
; Image classification
; Metadata
|
EI分类号 | Biomedical Engineering:461.1
; Health Care:461.7
; Data Processing and Image Processing:723.2
; Computer Applications:723.5
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9954228 |
引用统计 |
被引频次[WOS]:1
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/412172 |
专题 | 工学院_系统设计与智能制造学院 |
作者单位 | 1.Southern Univ Sci & Technol, Sch Syst Design & Intelligent Mfg SDIM, Shenzhen 518055, Peoples R China 2.Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Hong Kong, Peoples R China 3.Shanghai AI Lab, Shanghai 200232, Peoples R China 4.Guangdong Acad Med Sci, Guangdong Cardiovasc Inst, Guang dong Prov Peoples Hosp, Guangdong Prov Key Lab SouthChina Struct Heart Dis, Guangzhou 510050, Peoples R China |
第一作者单位 | 系统设计与智能制造学院 |
第一作者的第一单位 | 系统设计与智能制造学院 |
推荐引用方式 GB/T 7714 |
Wang, Zhenkun,Gui, Shuangchun,Ding, Xinpeng,et al. Spectrum and Style Transformation Framework for Omni-Domain COVID-19 Diagnosis[J]. IEEE Transactions on Emerging Topics in Computational Intelligence,2023,7(5):1527-1538.
|
APA |
Wang, Zhenkun,Gui, Shuangchun,Ding, Xinpeng,Hu, Xiaowei,Xu, Xiaowei,&Li, Xiaomeng.(2023).Spectrum and Style Transformation Framework for Omni-Domain COVID-19 Diagnosis.IEEE Transactions on Emerging Topics in Computational Intelligence,7(5),1527-1538.
|
MLA |
Wang, Zhenkun,et al."Spectrum and Style Transformation Framework for Omni-Domain COVID-19 Diagnosis".IEEE Transactions on Emerging Topics in Computational Intelligence 7.5(2023):1527-1538.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论