中文版 | English
题名

Spectrum and Style Transformation Framework for Omni-Domain COVID-19 Diagnosis

作者
通讯作者Hu, Xiaowei; Xu, Xiaowei
共同第一作者Wang, Zhenkun; Gui, Shuangchun
发表日期
2023-10
DOI
发表期刊
ISSN
2471-285X
卷号7期号:5页码:1527-1538
摘要

Coronavirus disease 2019 (COVID-19) is an ongoing global pandemic and profoundly affects almost all people around the world. Thus, many automatic diagnosis methods based on computed tomography (CT) images have been proposed to reduce the workload of radiologists. Most of the existing methods focus on the in-domain predictions, i.e., the training and testing have similar distributions, which is impractical in real-world situations, since the CT images can be collected from different devices and in different hospitals. To improve the diagnosis performance of COVID-19 for both in-domain and out-of-domain data, this paper proposes a spectrum and style transformation framework for omni-domain COVID-19 diagnosis. To achieve this, we first present a spectrum transform module, which helps to discover the discriminating features of each domain to recognize the in-domain data. Then, we formulate a cross-domain stylization module, which learns the cross-domain knowledge to enhance the model generalization capability to deal with out-of-domain data. Moreover, our framework is a plug-and-play module that can be easily integrated into existing deep models. We evaluate our framework on four COVID-19 datasets and show our method consistently improves the diagnosis performance of various methods on both in-domain and out-of-domain data.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 共同第一
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000886903000001
出版者
EI入藏号
20224813194813
EI主题词
Computer aided diagnosis ; Computerized tomography ; Data structures ; Image classification ; Metadata
EI分类号
Biomedical Engineering:461.1 ; Health Care:461.7 ; Data Processing and Image Processing:723.2 ; Computer Applications:723.5
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9954228
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/412172
专题工学院_系统设计与智能制造学院
作者单位
1.Southern Univ Sci & Technol, Sch Syst Design & Intelligent Mfg SDIM, Shenzhen 518055, Peoples R China
2.Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Hong Kong, Peoples R China
3.Shanghai AI Lab, Shanghai 200232, Peoples R China
4.Guangdong Acad Med Sci, Guangdong Cardiovasc Inst, Guang dong Prov Peoples Hosp, Guangdong Prov Key Lab SouthChina Struct Heart Dis, Guangzhou 510050, Peoples R China
第一作者单位系统设计与智能制造学院
第一作者的第一单位系统设计与智能制造学院
推荐引用方式
GB/T 7714
Wang, Zhenkun,Gui, Shuangchun,Ding, Xinpeng,et al. Spectrum and Style Transformation Framework for Omni-Domain COVID-19 Diagnosis[J]. IEEE Transactions on Emerging Topics in Computational Intelligence,2023,7(5):1527-1538.
APA
Wang, Zhenkun,Gui, Shuangchun,Ding, Xinpeng,Hu, Xiaowei,Xu, Xiaowei,&Li, Xiaomeng.(2023).Spectrum and Style Transformation Framework for Omni-Domain COVID-19 Diagnosis.IEEE Transactions on Emerging Topics in Computational Intelligence,7(5),1527-1538.
MLA
Wang, Zhenkun,et al."Spectrum and Style Transformation Framework for Omni-Domain COVID-19 Diagnosis".IEEE Transactions on Emerging Topics in Computational Intelligence 7.5(2023):1527-1538.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Zhenkun]的文章
[Gui, Shuangchun]的文章
[Ding, Xinpeng]的文章
百度学术
百度学术中相似的文章
[Wang, Zhenkun]的文章
[Gui, Shuangchun]的文章
[Ding, Xinpeng]的文章
必应学术
必应学术中相似的文章
[Wang, Zhenkun]的文章
[Gui, Shuangchun]的文章
[Ding, Xinpeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。