中文版 | English
题名

TransVLAD: Focusing on Locally Aggregated Descriptors for Few-Shot Learning

作者
通讯作者Jianguo Zhang
共同第一作者Haoquan Li; Laoming Zhang
DOI
发表日期
2022
会议名称
17th European Conference on Computer Vision (ECCV)
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-031-20043-4
会议录名称
卷号
13680
会议日期
OCT 23-27, 2022
会议地点
null,Tel Aviv,ISRAEL
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
This paper presents a transformer framework for few-shot learning, termed TransVLAD, with one focus showing the power of locally aggregated descriptors for few-shot learning. Our TransVLAD model is simple: a standard transformer encoder following a NeXtVLAD aggregation module to output the locally aggregated descriptors. In contrast to the prevailing use of CNN as part of the feature extractor, we are the first to prove self-supervised learning like masked autoencoders (MAE) can deal with the overfitting of transformers in few-shot image classification. Besides, few-shot learning can benefit from this general-purpose pre-training. Then, we propose two methods to mitigate few-shot biases, supervision bias and simple-characteristic bias. The first method is introducing masking operation into fine-tuning, by which we accelerate fine-tuning (by more than 3x) and improve accuracy. The second one is adapting focal loss into soft focal loss to focus on hard characteristics learning. Our TransVLAD finally tops 10 benchmarks on five popular few-shot datasets by an average of more than 2%.
关键词
学校署名
第一 ; 共同第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Key Research and Development Program of China[2021YFF1200800] ; Stable Support Plan Program of Shenzhen Natural Science Fund[20200925154942002]
WOS研究方向
Computer Science ; Imaging Science & Photographic Technology
WOS类目
Computer Science, Artificial Intelligence ; Imaging Science & Photographic Technology
WOS记录号
WOS:000904098900030
来源库
Web of Science
引用统计
被引频次[WOS]:5
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/412318
专题工学院_斯发基斯可信自主研究院
工学院_计算机科学与工程系
理学院_统计与数据科学系
作者单位
1.Research Institute of Trustworthy Autonomous Systems, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
2.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
3.Department of Statistics and Data Science, Southern University of Science and Technology, Shenzhen, China
4.Peng Cheng Lab, Shenzhen, China
第一作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系
通讯作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系
第一作者的第一单位斯发基斯可信自主系统研究院;  计算机科学与工程系
推荐引用方式
GB/T 7714
Haoquan Li,Laoming Zhang,Daoan Zhang,et al. TransVLAD: Focusing on Locally Aggregated Descriptors for Few-Shot Learning[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
136800509.pdf(796KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Haoquan Li]的文章
[Laoming Zhang]的文章
[Daoan Zhang]的文章
百度学术
百度学术中相似的文章
[Haoquan Li]的文章
[Laoming Zhang]的文章
[Daoan Zhang]的文章
必应学术
必应学术中相似的文章
[Haoquan Li]的文章
[Laoming Zhang]的文章
[Daoan Zhang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 136800509.pdf
格式: Adobe PDF
文件名: 136800509.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。