题名 | Well-balanced path-conservative central-upwind schemes based on flux globalization |
作者 | |
通讯作者 | Xin,Ruixiao |
发表日期 | 2023-02-01
|
DOI | |
发表期刊 | |
ISSN | 0021-9991
|
EISSN | 1090-2716
|
卷号 | 474 |
摘要 | In this paper, we introduce a new approach for constructing robust well-balanced (WB) finite-volume methods for nonconservative one-dimensional hyperbolic systems of nonlinear partial differential equations. The WB property, namely, the ability of the scheme to exactly preserve physically relevant steady-state solutions is enforced using a flux globalization approach according to which a studied system is rewritten in an equivalent quasi-conservative form with global fluxes. To this end, one needs to incorporate nonconservative product terms into the global fluxes. The resulting system can then be solved using a Riemann-problem-solver-free central-upwind (CU) scheme. However, a straightforward integration of the nonconservative terms would result in a scheme capable of exactly preserving very simple smooth steady states only and failing to preserve discontinuous steady states naturally arising in the nonconservative models. In order to ameliorate the flux globalization based CU scheme, we evaluate the integrals of the nonconservative product terms using the technique introduced in [5], where a path-conservative central-upwind scheme (PCCU) was introduced. This results in a new flux globalization based WB PCCU scheme, which is much more accurate and robust than both the original PCCU scheme and the straightforward flux globalization based CU scheme. This is illustrated using two nonconservative systems: a system describing fluid flows in nozzles with variable cross-sections and the two-layer shallow water equations. We demonstrate superiority of the proposed flux globalization based WB PCCU scheme on a number of challenging examples. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Natural Science Foundation of China[11771201];National Natural Science Foundation of China[12111530004];National Natural Science Foundation of China[12171226];Guangdong Provincial Key Laboratory Of Computational Science And Material Design[2019B030301001];
|
WOS研究方向 | Computer Science
; Physics
|
WOS类目 | Computer Science, Interdisciplinary Applications
; Physics, Mathematical
|
WOS记录号 | WOS:000915940100005
|
出版者 | |
EI入藏号 | 20224713159805
|
EI主题词 | Equations of motion
; Nonlinear equations
; Nozzles
; Partial differential equations
|
EI分类号 | Calculus:921.2
; Numerical Methods:921.6
|
ESI学科分类 | PHYSICS
|
Scopus记录号 | 2-s2.0-85142355478
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:7
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/412531 |
专题 | 理学院_数学系 深圳国际数学中心(杰曼诺夫数学中心)(筹) |
作者单位 | 1.Department of Mathematics,SUSTech International Center for Mathematics and Guangdong Provincial Key Laboratory of Computational Science and Material Design,Southern University of Science and Technology,Shenzhen,518055,China 2.Department of Mathematics,Southern University of Science and Technology,Shenzhen,518055,China 3.Institute of Mathematics,University of Zürich,Zürich,8057,Switzerland |
第一作者单位 | 数学系; 深圳国际数学中心(杰曼诺夫数学中心)(筹) |
通讯作者单位 | 数学系 |
第一作者的第一单位 | 数学系; 深圳国际数学中心(杰曼诺夫数学中心)(筹) |
推荐引用方式 GB/T 7714 |
Kurganov,Alexander,Liu,Yongle,Xin,Ruixiao. Well-balanced path-conservative central-upwind schemes based on flux globalization[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2023,474.
|
APA |
Kurganov,Alexander,Liu,Yongle,&Xin,Ruixiao.(2023).Well-balanced path-conservative central-upwind schemes based on flux globalization.JOURNAL OF COMPUTATIONAL PHYSICS,474.
|
MLA |
Kurganov,Alexander,et al."Well-balanced path-conservative central-upwind schemes based on flux globalization".JOURNAL OF COMPUTATIONAL PHYSICS 474(2023).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论