题名 | The Fun Facets of Mario: Multifaceted Experience-Driven PCG via Reinforcement Learning |
作者 | |
DOI | |
发表日期 | 2022-09-05
|
会议录名称 | |
摘要 | The recently introduced EDRL framework approaches the experience-driven (ED) procedural generation of game content via a reinforcement learning (RL) perspective. EDRL has so far shown its effectiveness in generating novel platformer game levels endlessly in an online fashion. This paper extends the framework by integrating multiple facets of game creativity in the ED generation process. In particular, we employ EDRL on the creative facets of game level and gameplay design in Super Mario Bros. Inspired by Koster's theory of fun, we formulate fun as moderate degrees of level or gameplay divergence and equip the algorithm with such reward functions. Moreover, we enable faster and more efficient game content generation through an episodic generative soft actor-critic algorithm. The resulting multifaceted EDRL is not only capable of generating fun levels efficiently, but it is also robust with respect to dissimilar playing styles and initial game level conditions. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [Scopus记录] |
Scopus记录号 | 2-s2.0-85142381764
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/412571 |
专题 | 南方科技大学 |
作者单位 | 1.Southern University of Science and Technology,China 2.Institute of Digital Games,University of Malta,Malta |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Wang,Ziqi,Liu,Jialin,Yannakakis,Georgios N.. The Fun Facets of Mario: Multifaceted Experience-Driven PCG via Reinforcement Learning[C],2022.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论