题名 | A machine learning model for wave prediction based on support vector machine |
作者 | |
通讯作者 | Feng,Xingya |
发表日期 | 2022-06
|
会议名称 | he Thirty Second (2022) International Ocean and Polar Engineering Conference
|
ISSN | 1098-6189
|
EISSN | 1555-1792
|
会议录名称 | |
页码 | 2026-2030
|
会议日期 | 2022-6
|
会议地点 | 上海
|
摘要 | In this paper, we propose a least square support vector machine (LSSVM) model to predict ocean wave elevations in a random sea state. The frequency and time domain characteristics of historical wave data are both considered in the proposed model. The wave data following a JONSWAP spectrum measured through an indoor wave tank experiment are used for the study. The measured time series were transformed to frequency domain by the fast Fourier transform and divided into five bands by filtering method. With the time series corresponding to each band, the LSSVM model is trained separately and used to predict future time series. The proposed model is shown to greatly extend the prediction time length, making it more effective to the application of the short-term real-time wave prediction. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
Scopus记录号 | 2-s2.0-85142184429
|
来源库 | Scopus
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/412592 |
专题 | 工学院_海洋科学与工程系 |
作者单位 | 1.Department of Ocean Science and Engineering,Southern University of Science and Technology,Shenzhen,China 2.Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou),Shenzhen,China 3.Department of Engineering Science,University of Oxford,Oxford,United Kingdom |
第一作者单位 | 海洋科学与工程系 |
通讯作者单位 | 海洋科学与工程系 |
第一作者的第一单位 | 海洋科学与工程系 |
推荐引用方式 GB/T 7714 |
Liu,Qiang,Feng,Xingya,Tang,Tianning. A machine learning model for wave prediction based on support vector machine[C],2022:2026-2030.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
2022-TPC-0464-R1.pdf(555KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论