题名 | Deep Learning with a Self-Adaptive Threshold for OTFS Channel Estimation |
作者 | |
DOI | |
发表日期 | 2022
|
ISBN | 978-1-6654-5545-9
|
会议录名称 | |
页码 | 1-5
|
会议日期 | 19-22 Oct. 2022
|
会议地点 | Hangzhou, China
|
摘要 | The recently developed orthogonal time frequency space (OTFS) technology has proved its capability to cope with the fast time-varying channels in high-mobility scenarios. In particular, the channel model in the delay-Doppler (DD) domain has a sparse representation, and its associated channel estimation can be realized by adopting one embedded pilot scheme. However, it may face performance degradation in scenarios with unknown and burst noise. In this paper, we develop a deep learning (DL)-based method to deal with complicated noise. In particular, we consider the sparsity of the OTFS channel and propose a deep residual shrinkage network (DRSN) to implicitly learn the residual noise for recovering the channel information. In addition, to further improve the channel estimation accuracy, we adopt a self-adaptive threshold to eliminate the irrelevant features to ensure channel sparsity. Simulation results verify the effectiveness of our proposed DRSN-based approach in complicated noise scenarios. |
关键词 | |
学校署名 | 第一
|
相关链接 | [IEEE记录] |
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9940260 |
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/414522 |
专题 | 南方科技大学 |
作者单位 | 1.Southern University of Science and Technology, Shenzhen, China 2.Peng Cheng Laboratory, Shenzhen, China 3.University of New South Wales, Sydney, Australia 4.South China University of Technology, Guangzhou, China |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Xiaoqi Zhang,Weijie Yuan,Chang Liu,et al. Deep Learning with a Self-Adaptive Threshold for OTFS Channel Estimation[C],2022:1-5.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论