中文版 | English
题名

Deep Learning with a Self-Adaptive Threshold for OTFS Channel Estimation

作者
DOI
发表日期
2022
ISBN
978-1-6654-5545-9
会议录名称
页码
1-5
会议日期
19-22 Oct. 2022
会议地点
Hangzhou, China
摘要
The recently developed orthogonal time frequency space (OTFS) technology has proved its capability to cope with the fast time-varying channels in high-mobility scenarios. In particular, the channel model in the delay-Doppler (DD) domain has a sparse representation, and its associated channel estimation can be realized by adopting one embedded pilot scheme. However, it may face performance degradation in scenarios with unknown and burst noise. In this paper, we develop a deep learning (DL)-based method to deal with complicated noise. In particular, we consider the sparsity of the OTFS channel and propose a deep residual shrinkage network (DRSN) to implicitly learn the residual noise for recovering the channel information. In addition, to further improve the channel estimation accuracy, we adopt a self-adaptive threshold to eliminate the irrelevant features to ensure channel sparsity. Simulation results verify the effectiveness of our proposed DRSN-based approach in complicated noise scenarios.
关键词
学校署名
第一
相关链接[IEEE记录]
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9940260
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/414522
专题南方科技大学
作者单位
1.Southern University of Science and Technology, Shenzhen, China
2.Peng Cheng Laboratory, Shenzhen, China
3.University of New South Wales, Sydney, Australia
4.South China University of Technology, Guangzhou, China
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Xiaoqi Zhang,Weijie Yuan,Chang Liu,et al. Deep Learning with a Self-Adaptive Threshold for OTFS Channel Estimation[C],2022:1-5.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xiaoqi Zhang]的文章
[Weijie Yuan]的文章
[Chang Liu]的文章
百度学术
百度学术中相似的文章
[Xiaoqi Zhang]的文章
[Weijie Yuan]的文章
[Chang Liu]的文章
必应学术
必应学术中相似的文章
[Xiaoqi Zhang]的文章
[Weijie Yuan]的文章
[Chang Liu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。