中文版 | English
题名

An Unsupervised Microwave Filter Design Optimization Method Based on a Hybrid Surrogate Model-Assisted Evolutionary Algorithm

作者
发表日期
2022
DOI
发表期刊
ISSN
1557-9670
EISSN
1557-9670
卷号PP期号:99页码:1-12
摘要
In resonator-coupled bandpass filter 3D design, it is a routine that the filter optimization methods are guided/supervised by designers' experience to carry out an iterative design optimization process. To realize automated or unsupervised filter 3D design optimization, a new method, called hybrid surrogate model-assisted evolutionary algorithm for filter optimization (H-SMEAFO), is proposed. H-SMEAFO aims to automatically obtain a highly optimal filter 3D design without designers' interaction (i.e., unsupervised) and is also not restricted to certain kinds of filter structures. In H-SMEAFO, the key innovations include a hybrid response feature-based objective function and a hybrid surrogate model-assisted global optimization algorithm; both are designed bespoke for filter design landscape characteristics. The performance of H-SMEAFO is demonstrated by an 8th-order dual-band waveguide filter with four transmission zeros and a 6th-order waveguide filter with two transmission zeros, for which, unsupervised design optimization does not appear to be possible using existing methods. Numerical results show the effectiveness and advantages of H-SMEAFO.
关键词
相关链接[IEEE记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
WOS研究方向
Engineering
WOS类目
Engineering, Electrical & Electronic
WOS记录号
WOS:000890814200001
出版者
EI入藏号
20225113271752
EI主题词
Bandpass filters ; Evolutionary algorithms ; Global optimization ; Iterative methods ; Linear programming ; Three dimensional computer graphics ; Three dimensional displays ; Waveguide filters
EI分类号
Electric Filters:703.2 ; Waveguides:714.3 ; Computer Peripheral Equipment:722.2 ; Data Processing and Image Processing:723.2 ; Computer Applications:723.5 ; Optimization Techniques:921.5 ; Numerical Methods:921.6
ESI学科分类
ENGINEERING
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9960817
引用统计
被引频次[WOS]:9
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/414586
专题工学院_电子与电气工程系
作者单位
1.James Watt School of Engineering, University of Glasgow, Glasgow, U.K.
2.Electronic and System Engineering, School of Electrical, University of Birmingham, Birmingham, U.K.
3.Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Liyuan Xue,Bo Liu,Yang Yu,et al. An Unsupervised Microwave Filter Design Optimization Method Based on a Hybrid Surrogate Model-Assisted Evolutionary Algorithm[J]. IEEE Transactions on Microwave Theory and Techniques,2022,PP(99):1-12.
APA
Liyuan Xue,Bo Liu,Yang Yu,Qingsha S. Cheng,Muhammad Imran,&Tianrui Qiao.(2022).An Unsupervised Microwave Filter Design Optimization Method Based on a Hybrid Surrogate Model-Assisted Evolutionary Algorithm.IEEE Transactions on Microwave Theory and Techniques,PP(99),1-12.
MLA
Liyuan Xue,et al."An Unsupervised Microwave Filter Design Optimization Method Based on a Hybrid Surrogate Model-Assisted Evolutionary Algorithm".IEEE Transactions on Microwave Theory and Techniques PP.99(2022):1-12.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liyuan Xue]的文章
[Bo Liu]的文章
[Yang Yu]的文章
百度学术
百度学术中相似的文章
[Liyuan Xue]的文章
[Bo Liu]的文章
[Yang Yu]的文章
必应学术
必应学术中相似的文章
[Liyuan Xue]的文章
[Bo Liu]的文章
[Yang Yu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。