中文版 | English
题名

Distributed Over-the-Air Computing for Fast Distributed Optimization: Beamforming Design and Convergence Analysis

作者
发表日期
2022
DOI
发表期刊
ISSN
1558-0008
EISSN
1558-0008
卷号PP期号:99页码:1-1
摘要
Distributed optimization finds a wide range of applications ranging from machine learning to vehicle platooning. To overcome the bottleneck caused by the required extensive message exchange, we propose in this work the framework of distributed over-the-air computing (AirComp) to realize a one-step aggregation for distributed optimization. Equivalently, the technique superimposes multiple instances of conventional AirComp processes, giving rise to the challenge of jointly designing multicast beamforming at devices to rein in errors due to interference and channel distortion. We consider two design criteria. One is to minimize the sum AirComp error (i.e., sum mean-squared error (MSE)) with respect to the desired average-functional values. An efficient solution approach is proposed by transforming the non-convex beamforming problem into an equivalent concave-convex fractional program and solving it by nesting convex programming into a bisection search. The other one, called zero-forcing (ZF) multicast beamforming, is to force the received over-the-air aggregated signals at devices to be equal to the desired functional values, where the optimal beamforming admits closed form. Last, the convergence of a classic distributed optimization algorithm is analyzed. The distributed AirComp is found experimentally to accelerate convergence by dramatically reducing communication latency.
关键词
相关链接[IEEE记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
资助项目
National Key Research and Development Program of China[2019YFB1802800] ; National Natural Science Foundation of China[62071212] ; Guangdong Basic and Applied Basic Research Foundation[2019B1515130003] ; Research Grants Council of the Hong Kong Special Administrative Region[HKU RFS2122-7S04] ; Hong Kong Research Grants Council[17208319] ; Shenzhen Science and Technology Program[JCYJ20200109141414409]
WOS研究方向
Engineering ; Telecommunications
WOS类目
Engineering, Electrical & Electronic ; Telecommunications
WOS记录号
WOS:000927934500018
出版者
EI入藏号
20225113271946
EI主题词
Array processing ; Artificial intelligence ; Convex optimization ; Distributed computer systems ; Errors ; Learning systems ; Mean square error ; Multicasting
EI分类号
Electromagnetic Waves in Relation to Various Structures:711.2 ; Telecommunication; Radar, Radio and Television:716 ; Optical Communication:717 ; Telephone Systems and Related Technologies; Line Communications:718 ; Digital Computers and Systems:722.4 ; Artificial Intelligence:723.4 ; Mathematical Statistics:922.2
ESI学科分类
COMPUTER SCIENCE
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9958941
引用统计
被引频次[WOS]:15
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/414590
专题工学院_电子与电气工程系
作者单位
1.Department of Electrical and Electronics Engineering, Southern University of Science and Technology, Shenzhen, China
2.Department of Electrical and Electronics Engineering, The University of Hong Kong, Hong Kong, China
第一作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Zhenyi Lin,Yi Gong,Kaibin Huang. Distributed Over-the-Air Computing for Fast Distributed Optimization: Beamforming Design and Convergence Analysis[J]. IEEE Journal on Selected Areas in Communications,2022,PP(99):1-1.
APA
Zhenyi Lin,Yi Gong,&Kaibin Huang.(2022).Distributed Over-the-Air Computing for Fast Distributed Optimization: Beamforming Design and Convergence Analysis.IEEE Journal on Selected Areas in Communications,PP(99),1-1.
MLA
Zhenyi Lin,et al."Distributed Over-the-Air Computing for Fast Distributed Optimization: Beamforming Design and Convergence Analysis".IEEE Journal on Selected Areas in Communications PP.99(2022):1-1.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhenyi Lin]的文章
[Yi Gong]的文章
[Kaibin Huang]的文章
百度学术
百度学术中相似的文章
[Zhenyi Lin]的文章
[Yi Gong]的文章
[Kaibin Huang]的文章
必应学术
必应学术中相似的文章
[Zhenyi Lin]的文章
[Yi Gong]的文章
[Kaibin Huang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。