中文版 | English
题名

Active Constraint Identification Assisted DC Optimal Power Flow

作者
DOI
发表日期
2022
ISBN
978-1-6654-5067-6
会议录名称
页码
185-189
会议日期
8-11 July 2022
会议地点
Shanghai, China
摘要
The optimal power flow (OPF) is important for the reliable operation and management of power systems. Due to the uncertainties introduced by the increasing penetration of renewable energy resources (RES), more frequent OPF calculations are compulsorily required, posing significant computational burdens to the timely derivation of optimal dispatching solutions. In this paper, an active constraint identification (ACI) approach is proposed to identify the active constraints under different generation and demand conditions so that the OPF computational time can be reduced. The ACI is based on deep convolutional neural networks. Simulation studies are performed on the IEEE 14/118/300 bus systems, and the optimal power flow is solved by using Gurobi/Python. Simulation results of the proposed methods are compared with those of the state-of-the-art to demonstrate the calculation speed improvement of the proposed method.
关键词
学校署名
其他
相关链接[IEEE记录]
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9949655
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/415460
专题南方科技大学
作者单位
1.Electrical Engineering Department, The Hong Kong Polytechnic University, Hong Kong, China
2.Electrical and Electronic Engineering Department, Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Huayi Wu,Minghao Wang,Zhao Xu,et al. Active Constraint Identification Assisted DC Optimal Power Flow[C],2022:185-189.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Huayi Wu]的文章
[Minghao Wang]的文章
[Zhao Xu]的文章
百度学术
百度学术中相似的文章
[Huayi Wu]的文章
[Minghao Wang]的文章
[Zhao Xu]的文章
必应学术
必应学术中相似的文章
[Huayi Wu]的文章
[Minghao Wang]的文章
[Zhao Xu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。