题名 | Optical Study of Quantum Dot and Perovskite Light-Emitting Diodes Based on Simulation |
姓名 | |
姓名拼音 | MEI Guanding
|
学号 | 11850025
|
学位类型 | 博士
|
学位专业 | Doctor of Philosophy
|
导师 | |
导师单位 | 电子与电气工程系
|
外机构导师 | Wallace C. H. Choy
|
外机构导师单位 | 香港大学
|
论文答辩日期 | 2022-09-22
|
论文提交日期 | 2022-11-25
|
学位授予单位 | 香港大学
|
学位授予地点 | 香港
|
摘要 | Next-generation displays present many challenges, including wider color gamut, higher stability, and increased energy efficiency. Colloidal quantum dots (QDs) and metal halide perovskite materials have emerged as optoelectronic semiconductors for next-generation displays. Compared with organic light-emitting diodes (OLEDs), quantum dot light-emitting diodes (QLEDs) and perovskite light-emitting diodes (PeLEDs) exhibit tunable emission colors, narrow emission spectra, high quantum yields, and low-cost solution processability. In recent years, intense efforts have been devoted to material quality and charge injection, and quantum yields of QDs and perovskite near 100% have been reported. However, the efficiency of QLEDs and PeLEDs is generally less than ~20% due to optical limitations. To achieve improved optical performance, it is necessary to investigate the optics of these devices. This thesis studies the optics of planar light-emitting diodes and proposes systematic routes for optical analysis and optimization. Considering the microcavity effect, surface plasmon polaritons (SPPs), dipole radiation, and the Purcell effect, we can manipulate the optical properties of QLEDs and PeLEDs. The thesis covers the following topics:
|
关键词 | |
其他关键词 | |
语种 | 英语
|
培养类别 | 联合培养
|
入学年份 | 2018
|
学位授予年份 | 2022-12
|
参考文献列表 | 1 QD Vision. QDs Generate Light for Next-Generation Displays. https://www.photonics.com/Articles/QDs_Generate_Light_for_Next-Generation_Displays/a56627 (accessed 26 May 2022).2 Anaya M, Rand BP, Holmes RJ, Credgington D, Bolink HJ, Friend RH et al. Best practices for measuring emerging light-emitting diode technologies. Nat. Photonics. 2019; 13: 818–821.3 Bang SY, Suh YH, Fan XB, Shin DW, Lee S, Choi HW et al. Technology progress on quantum dot light-emitting diodes for next-generation displays. Nanoscale Horizons 2021; 6: 68–77.4 DisplayMate. iPhone 13 Pro Max OLED Display Technology Shoot-Out. https://www.displaymate.com/iPhone_13Pro_ShootOut_1M.htm (accessed 26 May 2022).5 IDTechEx. Flexible, Printed OLED Displays 2020-2030: Forecasts, Markets, Technologies: IDTechEx. https://www.idtechex.com/en/research-report/flexible-printed-oled-displays-2020-2030-forecasts-markets-technologies/693 (accessed 26 May 2022).6 Meng T, Zheng Y, Zhao D, Hu H, Zhu Y, Xu Z et al. Ultrahigh-resolution quantum-dot light-emitting diodes. Nat Photonics 2022; 16: 297–303.7 Panfil YE, Oded M, Banin U. Colloidal quantum nanostructures: emerging materials for display applications. Angew. Chemie - Int. Ed. 2018; 57: 4274–4295.8 Chen F, Guan Z, Tang A. Nanostructure and device architecture engineering for high-performance quantum-dot light-emitting diodes. J. Mater. Chem. C. 2018; 6: 10958–10981.9 Liu XK, Xu W, Bai S, Jin Y, Wang J, Friend RH et al. Metal halide perovskites for light-emitting diodes. Nat. Mater. 2021; 20: 10–21.10 Tan ZK, Moghaddam RS, Lai ML, Docampo P, Higler R, Deschler F et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol 2014; 9: 687–692.11 Dong Q, Lei L, Mendes J, So F. Operational stability of perovskite light emitting diodes. JPhys Mater. 2020; 3. doi:10.1088/2515-7639/ab60c4.12 Zhang L, Sun C, He T, Jiang Y, Wei J, Huang Y et al. High-performance quasi-2D perovskite light-emitting diodes: From materials to devices. Light Sci. Appl. 2021; 10. doi:10.1038/s41377-021-00501-0.13 Sun Y, Jiang Y, Sun XW, Zhang S, Chen S. Beyond OLED: Efficient quantum dot light-emitting diodes for display and lighting application. Chem. Rec. 2019; 19: 1729–1752.14 Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science (80- ) 1996; 271: 933–937.15 Liu M, Yazdani N, Yarema M, Jansen M, Wood V, Sargent EH. Colloidal quantum dot electronics. Nat. Electron. 2021; 4: 548–558.16 Frasco MF, Chaniotakis N. Semiconductor quantum dots in chemical sensors and biosensors. Sensors. 2009; 9: 7266–7286.17 IDTechEx. Quantum Dot Materials and Technologies 2020-2030: Trends, Markets, Players: IDTechEx. https://www.idtechex.com/en/research-report/quantum-dot-materials-and-technologies-2020-2030-trends-markets-players/654 (accessed 26 May 2022).18 Shen H, Gao Q, Zhang Y, Lin Y, Lin Q, Li Z et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat Photonics 2019; 13: 192–197.19 Song J, Wang O, Shen H, Lin Q, Li Z, Wang L et al. Over 30% external quantum efficiency light-emitting diodes by engineering quantum dot-assisted energy level match for hole transport layer. Adv Funct Mater 2019; 29. doi:10.1002/adfm.201808377.20 Wang L, Lin J, Hu Y, Guo X, Lv Y, Tang Z et al. Blue quantum dot light-emitting diodes with high electroluminescent efficiency. ACS Appl Mater Interfaces 2017; 9: 38755–38760.21 Wu Z, Liu P, Zhang W, Wang K, Sun XW. Development of InP quantum dot-based light-emitting diodes. ACS Energy Lett. 2020; 5: 1095–1106.22 Mei G, Tan Y, Sun J, Wu D, Zhang T, Liu H et al. Light extraction employing optical tunneling in blue InP quantum dot light-emitting diodes. Appl Phys Lett 2022; 120. doi:10.1063/5.0084416.23 nanosys. Nanosys Technology Roadmap. https://nanosyshome.squarespace.com/s/Nanosys-Roadmap.pdf (accessed 25 May 2022).24 Anandan M. Progress of LED backlights for LCDs. J Soc Inf Disp 2008; 16: 287.25 Jang HS, Yang H, Kim SW, Han JY, Lee SG, Jeon DY. White light-emitting diodes with excellent color rendering based on organically capped CdSe quantum dots and Sr3SiO5:Ce 3+,Li+ phosphors. Adv Mater 2008; 20: 2696–2702.26 DSCC. Annual Quantum Dot Display Technology and Market Outlook Report - Display Supply Chain Consultants. https://www.displaysupplychain.com/report/annual-quantum-dot-technology-and-market-outlook-report (accessed 26 May 2022).27 Zhang W, Eperon GE, Snaith HJ. Metal halide perovskites for energy applications. Nat. Energy. 2016; 1. doi:10.1038/nenergy.2016.48.28 Quan LN, García de Arquer FP, Sabatini RP, Sargent EH. Perovskites for light emission. Adv. Mater. 2018; 30. doi:10.1002/adma.201801996.29 Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 2018; 562: 249–253.30 Lin K, Xing J, Quan LN, de Arquer FPG, Gong X, Lu J et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 2018; 562: 245–248.31 Kim YH, Kim S, Kakekhani A, Park J, Park J, Lee YH et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat Photonics 2021; 15: 148–155.32 Chen Z, Li Z, Hopper TR, Bakulin AA, Yip HL. Materials, photophysics and device engineering of perovskite light-emitting diodes. Reports Prog. Phys. 2021; 84. doi:10.1088/1361-6633/abefba.33 Ishihara T, Takahashi J, Goto T. Optical properties due to electronic transitions in two-dimensional semiconductors (CnH2n+1NH3)2PbI4. Phys Rev B 1990; 42: 11099–11107.34 Smith IC, Hoke ET, Solis-Ibarra D, McGehee MD, Karunadasa HI. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew Chemie - Int Ed 2014; 53: 11232–11235.35 Cao DH, Stoumpos CC, Farha OK, Hupp JT, Kanatzidis MG. 2D homologous perovskites as light-absorbing materials for solar cell applications. J Am Chem Soc 2015; 137: 7843–7850.36 Gholipour S, Saliba M. Bandgap tuning and compositional exchange for lead halide perovskite materials. In: Characterization Techniques for Perovskite Solar Cell Materials. 2019, pp 1–22.37 Almeida G, Infante I, Manna L. Resurfacing halide perovskite nanocrystals. Science (80- ) 2019; 364: 833–834.38 Dutta A, Behera RK, Pal P, Baitalik S, Pradhan N. near-unity photoluminescence quantum efficiency for all CsPbX3 (X=Cl, Br, and I) perovskite nanocrystals: A generic synthesis approach. Angew Chemie - Int Ed 2019; 58: 5552–5556.39 Sasaki T, Hasegawa M, Inagaki K, Ito H, Suzuki K, Oono T et al. Unravelling the electron injection/transport mechanism in organic light-emitting diodes. Nat Commun 2021; 12. doi:10.1038/s41467-021-23067-2.40 Sun C-T, Chan I-H, Kao P-C, Chu S-Y. Electron injection and transport mechanisms of an electron transport layer in OLEDs. J Electrochem Soc 2011; 158: H1284.41 Othman MK, Salleh MM, Mat AFA. Organic light emitting diode (OLED) using different hole transport and injecting layers. In: IEEE International Conference on Semiconductor Electronics, Proceedings, ICSE. 2006, pp 134–137.42 Kim HM, Youn JH, Seo GJ, Jang J. Inverted quantum-dot light-emitting diodes with solution-processed aluminium-zinc oxide as a cathode buffer. J Mater Chem C 2013; 1: 1567–1573.43 Kim HM, Bin Mohd Yusoff AR, Youn JH, Jang J. Inverted quantum-dot light emitting diodes with cesium carbonate doped aluminium-zinc-oxide as the cathode buffer layer for high brightness. J Mater Chem C 2013; 1: 3924–3930.44 Pan J, Wei C, Wang L, Zhuang J, Huang Q, Su W et al. Boosting the efficiency of inverted quantum dot light-emitting diodes by balancing charge densities and suppressing exciton quenching through band alignment. Nanoscale 2018; 10: 592–602.45 Yang H, Kim J, Yamamoto K, Hosono H. Efficient charge generation layer for tandem OLEDs: Bi-layered MoO3/ZnO-based oxide semiconductor. Org Electron 2017; 46: 133–138.46 Yuan J, Liu W, Yao J, Sun Q, Dai Y, Chen J et al. Highly efficient charge generation and injection in HAT-CN/TAPC heterojunction for high efficiency tandem organic light-emitting diodes. Org Electron 2020; 83. doi:10.1016/j.orgel.2020.105745.47 Park S-R, Suh MC. Enhanced device performances of a new inverted top-emitting OLEDs with relatively thick Ag electrode. Opt Express 2018; 26: 4979.48 Lee T, Hahm D, Kim K, Bae WK, Lee C, Kwak J. Highly efficient and bright inverted top-emitting InP Quantum dot light-emitting diodes introducing a hole-suppressing interlayer. Small 2019; 15. doi:10.1002/smll.201905162.49 Mei G, Wang W, Wu D, Surman PA, Wang K, Choy W et al. Full-color quantum dot light-emitting diodes based on microcavities. IEEE Photonics J 2022. doi:10.1109/JPHOT.2022.3159278.50 Wu CC, Chen CW, Lin CL, Yang CJ. Advanced organic light-emitting devices for enhancing display performances. IEEE/OSA J Disp Technol 2005; 1: 248–266.51 HSL and HSV - Wikipedia. https://en.wikipedia.org/wiki/HSL_and_HSV (accessed 31 May 2022).52 Gamut - Wikipedia. https://en.wikipedia.org/wiki/Gamut (accessed 1 Jun 2022).53 Poynton C. The CIE system of colorimetry. In: Digital Video and HD. 2012, pp 265–286.54 Luminous efficiency function - Wikipedia. https://en.wikipedia.org/wiki/Luminous_efficiency_function (accessed 1 Jun 2022).55 Tsutsui T, Takada N. Progress in emission efficiency of organic light-emitting diodes: Basic understanding and its technical application. Jpn J Appl Phys 2013; 52. doi:10.7567/JJAP.52.110001.56 Shim JI, Shin DS. Measuring the internal quantum efficiency of light-emitting diodes: Towards accurate and reliable room-temperature characterization. Nanophotonics 2018; 7: 1601–1615.57 Kishore Kesavan K, Jayakumar J, Lee M, Hexin C, Sudheendran Swayamprabha S, Kumar Dubey D et al. Achieving a 32% EQE solution-processed simple structure OLED via exciplex system. Chem Eng J 2022; 435. doi:10.1016/j.cej.2022.134879.58 Tsai KW, Hung MK, Mao YH, Chen SA. Solution-processed thermally activated delayed fluorescent oled with high EQE as 31% using high triplet energy crosslinkable hole transport materials. Adv Funct Mater 2019; 29. doi:10.1002/adfm.201901025.59 Patil VV, Lee KH, Lee JY. Universal blue emitters for high efficiency thermally activated delayed fluorescence and fluorescent organic light-emitting diodes. Dye Pigment 2020; 174. doi:10.1016/j.dyepig.2019.108070.60 Acharya KP, Titov A, Hyvonen J, Wang C, Tokarz J, Holloway PH. High efficiency quantum dot light emitting diodes from positive aging. Nanoscale 2017; 9: 14451–14457.61 Fu Y, Jiang W, Kim D, Lee W, Chae H. Highly efficient and fully solution-processed inverted light-emitting diodes with charge control interlayers. ACS Appl Mater Interfaces 2018; 10: 17295–17300.62 Yang Z, Wu Q, Lin G, Zhou X, Wu W, Yang X et al. All-solution processed inverted green quantum dot light-emitting diodes with concurrent high efficiency and long lifetime. Mater Horizons 2019; 6: 2009–2015.63 Ji K, Anaya M, Abfalterer A, Stranks SD. Halide perovskite light-emitting diode technologies. Adv. Opt. Mater. 2021; 9. doi:10.1002/adom.202002128.64 Xu W, Hu Q, Bai S, Bao C, Miao Y, Yuan Z et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat Photonics 2019; 13: 418–424.65 Protesescu L, Yakunin S, Bodnarchuk MI, Krieg F, Caputo R, Hendon CH et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett 2015; 15: 3692–3696.66 Kulkarni SA, Mhaisalkar SG, Mathews N, Boix PP. Perovskite nanoparticles: synthesis, properties, and novel applications in photovoltaics and LEDs. Small Methods. 2019; 3. doi:10.1002/smtd.201800231.67 Gualdrón-Reyes AF, Masi S, Mora-Seró I. Progress in halide-perovskite nanocrystals with near-unity photoluminescence quantum yield. Trends Chem. 2021; 3: 499–511.68 Lambert’s cosine law - Wikipedia. https://en.wikipedia.org/wiki/Lambert%27s_cosine_law (accessed 30 May 2022).69 Greenham NC, Friend RH, Bradley DDC. Angular dependence of the emission from a conjugated polymer light‐emitting diode: Implications for efficiency calculations. Adv Mater 1994; 6: 491–494.70 Salehi A, Chen Y, Fu X, Peng C, So F. Manipulating refractive index in organic light-emitting diodes. ACS Appl Mater Interfaces 2018; 10: 9595–9601.71 Dement DB, Puri M, Ferry VE. Determining the complex refractive index of neat CdSe/CdS quantum dot films. J Phys Chem C 2018; 122: 21557–21568.72 Calvo ME. Materials chemistry approaches to the control of the optical features of perovskite solar cells. J. Mater. Chem. A. 2017; 5: 20561–20578.73 Löper P, Stuckelberger M, Niesen B, Werner J, Filipič M, Moon SJ et al. Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry. J Phys Chem Lett 2015; 6: 66–71.74 Brittman S, Garnett EC. Measuring n and k at the microscale in single crystals of CH3NH3PbBr3 perovskite. J Phys Chem C 2016; 120: 616–620.75 Park JS, Choi S, Yan Y, Yang Y, Luther JM, Wei SH et al. Electronic structure and optical properties of α-CH3NH3PbBr3 perovskite single crystal. J Phys Chem Lett 2015; 6: 4304–4308.76 Sarkar P, Mayengbam R, Tripathy SK, Baishnab KL. Cubic methylammonium lead chloride perovskite as a transparent conductor in solar cell applications: An experimental and theoretical study. Indian J Pure Appl Phys 2019; 57: 891–899.77 Singh RK, Kumar R, Jain N, Dash SR, Singh J, Srivastava A. Investigation of optical and dielectric properties of CsPbI3 inorganic lead iodide perovskite thin film. J Taiwan Inst Chem Eng 2019; 96: 538–542.78 Jin JM. Theory and Computation of Electromagnetic Field. 2010 doi:10.1002/9780470874257.79 Novotny L, Hecht B. Principles of Nano-optics. Cambridge university press, 2012.80 Griffiths DJ. Introduction to Electrodynamics Fourth Edition. 2021.81 Electromagnetic radiation - Wikipedia. https://en.wikipedia.org/wiki/Electromagnetic_radiation (accessed 4 Jun 2022).82 Kasap SO. Optoelectronics and Photonics, Principles and Practices, Second Edition. Pearson, 2013.83 Born M, Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. 1999.84 Domenico G Di. Fresnel Equations. 2011.https://demonstrations.wolfram.com/FresnelEquations/.85 Yeh P. Optical Waves in Layered Media. John Wiley & Sons, Inc., 2005.86 Marcato T, Shih CJ. Molecular orientation effects in organic light-emitting diodes. Helv. Chim. Acta. 2019; 102. doi:10.1002/hlca.201900048.87 Jackson JD. Classical Electrodynamics. 1999 doi:10.1119/1.19136.88 Shibuya Y. Electromagnetic Fields For Hertzian Dipoles. 2012.http://demonstrations.wolfram.com/ElectromagneticFieldsForHertzianDipoles/.89 Wasey JAE, Barnes WL. Efficiency of spontaneous emission from planar microcavities. J Mod Opt 2000; 47: 725–741.90 Kim WD, Kim D, Yoon DE, Lee H, Lim J, Bae WK et al. Pushing the efficiency envelope for semiconductor nanocrystal-based electroluminescence devices using anisotropic nanocrystals. Chem Mater 2019; 31: 3066–3082.91 Yokoyama D. Molecular orientation in small-molecule organic light-emitting diodes. J Mater Chem 2011; 21: 19187–19202.92 Komino T, Tanaka H, Adachi C. Selectively controlled orientational order in linear-shaped thermally activated delayed fluorescent dopants. Chem Mater 2014; 26: 3665–3671.93 Cui D, Wang S, Li S, Liu Y, Du H, Du Q et al. Enhanced performance of OLED based on molecular orientation of emission layer by optimized substrate temperature. J Mater Sci Mater Electron 2021; 32: 12075–12083.94 Purcell EM. Spontaneous Emission Probabilities at Radio Frequencies. In: Confined Electrons and Photons. Springer, 1995, pp 839–839.95 Kosik M, Burlayenko O, Rockstuhl C, Fernandez-Corbaton I, Słowik K. Interaction of atomic systems with quantum vacuum beyond electric dipole approximation. Sci Rep 2020; 10. doi:10.1038/s41598-020-62629-0.96 Buckley A. Organic Light-Emitting Diodes (OLEDs): Materials, Devices and Applications. 2013 doi:10.1533/9780857098948.97 Chance RR, Prock A, Silbey R. Molecular fluorescence and energy transfer near interfaces. Adv Chem Phys 1978; 37: 1–65.98 Ismail N, Kores CC, Geskus D, Pollnau M. Fabry-Pérot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity. Opt Express 2016; 24: 16366.99 Deppe DG, Lei C, Lin CC, Huffaker DL. Spontaneous emission from planar microstructures. J Mod Opt 1994; 41: 325–344.100 Dodabalapur A, Rothberg LJ, Jordan RH, Miller TM, Slusher RE, Phillips JM. Physics and applications of organic microcavity light emitting diodes. J Appl Phys 1996; 80: 6954–6964.101 Lee JH, Chen KY, Hsiao CC, Chen HC, Chang CH, Kiang YW et al. Radiation simulations of top-emitting organic light-emitting devices with two- and three-microcavity structures. IEEE/OSA J Disp Technol 2006; 2: 130–137.102 Hofmann S, Thomschke M, Lüssem B, Leo K. Top-emitting organic light-emitting diodes. Opt Express 2011; 19: A1250.103 Schubert EF, Hunt NEJ, Micovic M, Malik RJ, Sivco DL, Cho AY et al. Highly efficient light-emitting diodes with microcavities. Science (80- ) 1994; 265: 943–945.104 Miao Y, Cheng L, Zou W, Gu L, Zhang J, Guo Q et al. Microcavity top-emission perovskite light-emitting diodes. Light Sci. Appl. 2020; 9. doi:10.1038/s41377-020-0328-6.105 Wang W, Peng H, Wang S, Chen S. Top-emitting organic light-emitting diodes integrated with thermally evaporated scattering film for reducing angular dependence of emission spectra. Org Electron 2015; 24: 195–199.106 Cui J, Liu Y, Deng Y, Lin C, Fang Z, Xiang C et al. Efficient light-emitting diodes based on oriented perovskite nanoplatelets. Sci Adv 2021; 7. doi:10.1126/sciadv.abg8458.107 Zou C, Lin LY. Effect of emitter orientation on the outcoupling efficiency of perovskite light-emitting diodes. Opt Lett 2020; 45: 4786.108 Yuan F, Zheng X, Johnston A, Wang YK, Zhou C, Dong Y et al. Color-pure red light-emitting diodes based on two-dimensional lead-free perovskites. Sci Adv 2020; 6. doi:10.1126/sciadv.abb0253.109 Maier SA. Plasmonics: Fundamentals and applications. 2007 doi:10.1007/0-387-37825-1.110 Mendoza Herrera LJ, Arboleda DM, Schinca DC, Scaffardi LB. Determination of plasma frequency, damping constant, and size distribution from the complex dielectric function of noble metal nanoparticles. J Appl Phys 2014; 116. doi:10.1063/1.4904349.111 Kawata S, Ohtsu M, Irie M. Near-field optics and surface plasmon polaritons. Springer Science & Business Media, 2001.112 Forrest SR. Organic Electronics: Foundations to Applications. 2020 doi:10.1093/oso/9780198529729.001.0001.113 Nowy S, Frischeisen J, Brütting W. Simulation based optimization of light-outcoupling in organic light-emitting diodes. In: Organic Light Emitting Materials and Devices XIII. 2009, p 74151C.114 Salehi A, Ho S, Chen Y, Peng C, Yersin H, So F. Highly efficient organic light-emitting diode using a low refractive index electron transport layer. Adv Opt Mater 2017; 5. doi:10.1002/adom.201700197.115 Fu X, Chen Y-A, Shin D-H, Mehta Y, Chen I-T, Barange N et al. Recovering cavity effects in corrugated organic light emitting diodes. Opt Express 2020; 28: 32214.116 Fu X, Peng C, Samal M, Barange N, Chen YA, Shin DH et al. Mode dispersion in photonic crystal organic light-emitting diodes. ACS Appl Electron Mater 2020; 2: 1759–1767.117 Hauss J, Bocksrocker T, Riedel B, Lemmer U, Gerken M. On the interplay of waveguide modes and leaky modes in corrugated OLEDs. Opt Express 2011; 19: A851.118 Nowy S, Krummacher BC, Frischeisen J, Reinke NA, Brütting W. Light extraction and optical loss mechanisms in organic light-emitting diodes: Influence of the emitter quantum efficiency. J Appl Phys 2008; 104. doi:10.1063/1.3043800.119 Rim YS, Kim SM, Kim KH. Properties of indium-zinc-oxide thin films prepared by facing targets sputtering at room temperature. J Korean Phys Soc 2009; 54: 1267–1272.120 García de Arquer FP, Talapin D V., Klimov VI, Arakawa Y, Bayer M, Sargent EH. Semiconductor quantum dots: Technological progress and future challenges. Science. 2021; 373. doi:10.1126/science.aaz8541.121 Zhang W, Ding S, Zhuang W, Wu D, Liu P, Qu X et al. InP/ZnS/ZnS core/shell blue quantum dots for efficient light-emitting diodes. Adv Funct Mater 2020; 30. doi:10.1002/adfm.202005303.122 Won YH, Cho O, Kim T, Chung DY, Kim T, Chung H et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019; 575: 634–638.123 Chao WC, Chiang TH, Liu YC, Huang ZX, Liao CC, Chu CH et al. High efficiency green InP quantum dot light-emitting diodes by balancing electron and hole mobility. Commun Mater 2021; 2. doi:10.1038/s43246-021-00203-5.124 Chen D, Chen D, Dai X, Zhang Z, Lin J, Deng Y et al. Shelf-stable quantum-dot light-emitting diodes with high operational performance. Adv Mater 2020; 32. doi:10.1002/adma.202006178.125 Kim KH, Jo JH, Jo DY, Han CY, Yoon SY, Kim Y et al. Cation-exchange-derived InGaP alloy quantum dots toward blue emissivity. Chem Mater 2020; 32: 3537–3544.126 Zhang H, Ma X, Lin Q, Zeng Z, Wang H, Li LS et al. High-brightness blue inp quantum dot-based electroluminescent devices: the role of shell thickness. J Phys Chem Lett 2020; 11: 960–967.127 Tan G, Zhu R, Tsai YS, Lee KC, Luo Z, Lee YZ et al. High ambient contrast ratio OLED and QLED without a circular polarizer. J Phys D Appl Phys 2016; 49. doi:10.1088/0022-3727/49/31/315101.128 Liang H, Luo Z, Zhu R, Dong Y, Lee JH, Zhou J et al. High efficiency quantum dot and organic LEDs with a back-cavity and a high index substrate. J Phys D Appl Phys 2016; 49. doi:10.1088/0022-3727/49/14/145103.129 Liang H, Zhu R, Dong Y, Wu S-T, Li J, Wang J et al. Enhancing the outcoupling efficiency of quantum dot LEDs with internal nano-scattering pattern. Opt Express 2015; 23: 12910.130 Jiang Y, Chen S, Li G, Li H, Kwok HS. A low-cost nano-modified substrate integrating both internal and external light extractors for enhancing light out-coupling in organic light-emitting diodes. Adv Opt Mater 2014; 2: 418–422.131 Xiao X, Wang K, Ye T, Cai R, Ren Z, Wu D et al. Enhanced hole injection assisted by electric dipoles for efficient perovskite light-emitting diodes. Commun Mater 2020; 1. doi:10.1038/s43246-020-00084-0.132 Tan Y, Zhang W, Xiao X, Sun J, Ma J, Zhang T et al. Enhancing hole injection by electric dipoles for efficient blue InP QLEDs. Appl Phys Lett 2021; 119. doi:10.1063/5.0071508.133 Zhu S, Yu AW, Hawley D, Roy R. Frustrated total internal reflection: A demonstration and review. Am J Phys 1986; 54: 601–607.134 Wang S, Dou X, Chen L, Fang Y, Wang A, Shen H et al. Enhanced light out-coupling efficiency of quantum dot light emitting diodes by nanoimprint lithography. Nanoscale 2018; 10: 11651–11656.135 Lim T-B, Cho KH, Kim Y-H, Jeong Y-C. Enhanced light extraction efficiency of OLEDs with quasiperiodic diffraction grating layer. Opt Express 2016; 24: 17950.136 Zakharian AR, Moloney J V., Mansuripur M. Surface plasmon polaritons on metallic surfaces. Opt Express 2007; 15: 183.137 Lu J, Feng W, Mei G, Sun J, Yan C, Zhang D et al. Ultrathin PEDOT:PSS enables colorful and efficient perovskite light-emitting diodes. Adv Sci 2020; 7. doi:10.1002/advs.202000689.138 Man J-X, He S-J, Shi C-S, Yang H-N, Wang D-K, Lu Z-H. Optical design of connecting electrodes for tandem organic light-emitting diodes. Opt Lett 2020; 45: 3561.139 Haverinen HM, Myllylä RA, Jabbour GE, Jabbour GE. Inkjet printed RGB quantum dot-hybrid LED. IEEE/OSA J Disp Technol 2010; 6: 87–89.140 Yang P, Zhang L, Kang DJ, Strahl R, Kraus T. High-resolution inkjet printing of quantum dot light-emitting microdiode arrays. Adv Opt Mater 2020; 8. doi:10.1002/adom.201901429.141 Jiang C, Zhong Z, Liu B, He Z, Zou J, Wang L et al. Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices. ACS Appl Mater Interfaces 2016; 8: 26162–26168.142 Kim TH, Cho KS, Lee EK, Lee SJ, Chae J, Kim JW et al. Full-colour quantum dot displays fabricated by transfer printing. Nat Photonics 2011; 5: 176–182.143 Ji T, Jin S, Zhang H, Chen S, Sun XW. Full color quantum dot light-emitting diodes patterned by photolithography technology. J Soc Inf Disp 2018; 26: 121–127.144 Mei W, Zhang Z, Zhang A, Li D, Zhang X, Wang H et al. High-resolution, full-color quantum dot light-emitting diode display fabricated via photolithography approach. Nano Res 2020; 13: 2485–2491.145 Song KW, Costi R, Bulovic̈ V. Electrophoretic deposition of CdSe/ZnS quantum dots for light-emitting devices. Adv Mater 2013; 25: 1420–1423.146 Liu G, Zhou X, Chen S. Very bright and efficient microcavity top-emitting quantum dot light-emitting diodes with ag electrodes. ACS Appl Mater Interfaces 2016; 8: 16768–16775.147 Wang M, Lin J, Hsiao YC, Liu X, Hu B. Investigating underlying mechanism in spectral narrowing phenomenon induced by microcavity in organic light emitting diodes. Nat Commun 2019; 10. doi:10.1038/s41467-019-09585-0.148 Zhuang Q, Zou D, You G, Li K, Zhen H, Ling Q. Solution-processed, top-emitting, microcavity polymer light-emitting diodes for the pure red, green, blue and near white emission. Nanotechnology 2020; 31. doi:10.1088/1361-6528/ab51bb.149 Lee BH, Hwang JY, Kim S, Lee SY. Amorphous oxide based microcavity color filter with high selectivity. Opt Mater (Amst) 2020; 100. doi:10.1016/j.optmat.2020.109693.150 Zhang W, Liu H, Sun R. Full color organic light-emitting devices with microcavity structure and color filter. Opt Express 2009; 17: 8005.151 Zhang H, Chen L, Chen S. Quantum-dot and organic hybrid tandem light-emitting diodes with color-selecting intermediate electrodes for full-color displays. Nanoscale 2021; 13: 16781–16789.152 Chen L, Qin Z, Chen S. Ultrahigh resolution pixelated top-emitting quantum-dot light-emitting diodes enabled by color-converting cavities. Small Methods 2022; 6. doi:10.1002/smtd.202101090.153 Adobe Systems Inc. Adobe RGB (1998) ICC profile. 2011.http://www.adobe.com/digitalimag/adobergb.html (accessed 3 Feb 2021).154 Joo WJ, Kyoung J, Esfandyarpour M, Lee SH, Koo H, Song S et al. Metasurface-driven OLED displays beyond 10,000 pixels per inch. Science (80- ) 2020; 370. doi:10.1126/science.abc8530.155 Tan G, Lee J-H, Lin S-C, Zhu R, Choi S-H, Wu S-T. Analysis and optimization on the angular color shift of RGB OLED displays. Opt Express 2017; 25: 33629.156 Zhu Y, Xu R, Zhou Y, Xu Z, Liu Y, Tian F et al. Ultrahighly efficient white quantum dot light-emitting diodes operating at low voltage. Adv Opt Mater 2020; 8. doi:10.1002/adom.202001479.157 Oh S, Han CY, Yang H, Kim J. Highly efficient white electroluminescent devices with hybrid double emitting layers of quantum dots and phosphorescent molecules. Nanoscale 2019; 11: 9276–9280.158 Zhang H, Su Q, Chen S. Suppressing förster resonance energy transfer in close-packed quantum-dot thin film: Toward efficient quantum-dot light-emitting diodes with external quantum efficiency over 21.6%. Adv Opt Mater 2020; 8. doi:10.1002/adom.201902092.159 Shen P, Li X, Cao F, Ding X, Yang X. Highly efficient, all-solution-processed, flexible white quantum dot light-emitting diodes. J Mater Chem C 2018; 6: 9642–9648.160 Pacchioni G. Highly efficient perovskite LEDs. Nat Rev Mater 2021; 6: 108.161 Jayakumar J, Wu T-L, Huang M-J, Huang P-Y, Chou T-Y, Lin H-W et al. Pyridine-carbonitrile–carbazole-based delayed fluorescence materials with highly congested structures and excellent OLED performance. ACS Appl Mater Interfaces 2019; 11: 21042–21048.162 Hong G, Gan X, Leonhardt C, Zhang Z, Seibert J, Busch JM et al. A brief history of OLEDs—emitter development and industry milestones. Adv Mater 2021; 33: 2005630.163 Fakharuddin A, Qiu W, Croes G, Devižis A, Gegevičius R, Vakhnin A et al. Reduced efficiency roll-off and improved stability of mixed 2D/3D perovskite light emitting diodes by balancing charge injection. Adv Funct Mater 2019; 29: 1904101.164 Liu X, Guo X, Lv Y, Hu Y, Fan Y, Lin J et al. High brightness and enhanced stability of CsPbBr3-based perovskite light-emitting diodes by morphology and interface engineering. Adv Opt Mater 2018; 6: 1801245.165 Shin YS, Yoon YJ, Heo J, Song S, Kim JW, Park SY et al. Functionalized PFN-X (X= Cl, Br, or I) for balanced charge carriers of highly efficient blue light-emitting diodes. ACS Appl Mater Interfaces 2020; 12: 35740–35747.166 Li R, Cai L, Zou Y, Xu H, Tan Y, Wang Y et al. High-efficiency perovskite light-emitting diodes with improved interfacial contact. ACS Appl Mater Interfaces 2020; 12: 36681–36687.167 Gao C-H, Zhang Y, Ma X-J, Yu F-X, Jia Y-L, Lei Y-L et al. A method towards 100% internal quantum efficiency for all-inorganic cesium halide perovskite light-emitting diodes. Org Electron 2018; 58: 88–93.168 Wei Q, Fei N, Islam A, Lei T, Hong L, Peng R et al. Small-molecule emitters with high quantum efficiency: Mechanisms, structures, and applications in OLED devices. Adv Opt Mater 2018; 6: 1800512.169 Wei Q, Ge Z, Voit B. Thermally activated delayed fluorescent polymers: structures, properties, and applications in OLED devices. Macromol Rapid Commun 2019; 40: 1800570.170 Lee J, Song J, Park J, Yoo S. Toward ultra-efficient OLEDs: Approaches based on low refractive index materials. Adv Opt Mater 2021; 9: 2002182.171 Smith LH, Barnes WL. Using a low-index host layer to increase emission from organic light-emitting diode structures. Org Electron 2006; 7: 490–494.172 Poitras D, Kuo C-C, Py C. Design of high-contrast OLEDs with microcavity effect. Opt Express 2008; 16: 8003–8015.173 Deng L, Zhou H, Chen S, Shi H, Liu B, Wang L et al. Influences of wide-angle and multi-beam interference on the chromaticity and efficiency of top-emitting white organic light-emitting diodes. J Appl Phys 2015; 117. doi:10.1063/1.4913482.174 Tokito S, Tsutsui T, Taga Y. Microcavity organic light-emitting diodes for strongly directed pure red, green, and blue emissions. J Appl Phys 1999; 86: 2407–2411.175 Park MJ, Kim GH, Son YH, Bae HW, Kong JH, Kwon JH. High efficiency red top-emitting micro-cavity organic light emitting diodes. Opt Express 2014; 22: 19919–19929.176 Cho H, Chung J, Song J, Lee J, Lee H, Lee J et al. Importance of Purcell factor for optimizing structure of organic light-emitting diodes. Opt Express 2019; 27: 11057.177 Meerheim R, Furno M, Hofmann S, Lüssem B, Leo K. Quantification of energy loss mechanisms in organic light-emitting diodes. Appl Phys Lett 2010; 97: 275.178 Meng S-S, Li Y-Q, Tang J-X. Theoretical perspective to light outcoupling and management in perovskite light-emitting diodes. Org Electron 2018; 61: 351–358.179 Shi X-B, Liu Y, Yuan Z, Liu X-K, Miao Y, Wang J et al. Optical energy losses in organic–inorganic hybrid perovskite light-emitting diodes. Adv Opt Mater 2018; 6: 1800667.180 Cho S-H, Song Y-W, Lee J, Kim Y-C, Lee JH, Ha J et al. Weak-microcavity organic light-emitting diodes with improved light out-coupling. Opt Express 2008; 16: 12632–12639.181 Forrest SR, Bradley DDC, Thompson ME. Measuring the efficiency of organic light-emitting devices. Adv Mater 2003; 15: 1043–1048.182 Jin W, Deng Y, Guo B, Lian Y, Zhao B, Di D et al. On the accurate characterization of quantum-dot light-emitting diodes for display applications. npj Flex Electron 2022; 6: 1–12.183 Chance RR, Prock A, Silbey R. Comments on the classical theory of energy transfer. J Chem Phys 1975; 62: 2245–2253.184 Lakowicz JR. Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal Biochem 2005; 337: 171–194.185 Yeung MS, Gustafson TK. Spontaneous emission near an absorbing dielectric surface. Phys Rev A 1996; 54: 5227.186 Shamsi J, Urban AS, Imran M, De Trizio L, Manna L. Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chem Rev 2019; 119: 3296–3348.187 Zhang Q, Zhang D, Fu Y, Poddar S, Shu L, Mo X et al. Light out-coupling management in perovskite leds—what can we learn from the past? Adv. Funct. Mater. 2020; 30. doi:10.1002/adfm.202002570.188 Salehi A, Fu X, Shin DH, So F. Recent advances in OLED optical design. Adv. Funct. Mater. 2019; 29. doi:10.1002/adfm.201808803.189 Jeon S, Zhao L, Jung YJ, Kim JW, Kim SY, Kang H et al. Perovskite light-emitting diodes with improved outcoupling using a high-index contrast nanoarray. Small 2019; 15. doi:10.1002/smll.201900135.190 Pile DFP. Emitting organically. Nat. Photonics. 2021; 15: 635–636.191 Lin HY, Lee JH, Wei MK, Dai CL, Wu CF, Ho YH et al. Improvement of the outcoupling efficiency of an organic light-emitting device by attaching microstructured films. Opt Commun 2007; 275: 464–469.192 Möller S, Forrest SR. Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays. J Appl Phys 2002; 91: 3324–3327.193 Peng H, Ho YL, Yu XJ, Wong M, Kwok HS. Coupling efficiency enhancement in organic light-emitting devices using microlens array - Theory and experiment. IEEE/OSA J Disp Technol 2005; 1: 278–282.194 Zhou J, Ai N, Wang L, Zheng H, Luo C, Jiang Z et al. Roughening the white OLED substrate’s surface through sandblasting to improve the external quantum efficiency. Org Electron 2011; 12: 648–653.195 Zhou DY, Shi XB, Gao CH, Cai SD, Jin Y, Liao LS. Light extraction enhancement from organic light-emitting diodes with randomly scattered surface fixture. Appl Surf Sci 2014; 314: 858–863.196 Zhao L, Lee KM, Roh K, Khan SUZ, Rand BP. Improved outcoupling efficiency and stability of perovskite light-emitting diodes using thin emitting layers. Adv Mater 2019; 31. doi:10.1002/adma.201805836.197 Zhang Q, Tavakoli MM, Gu L, Zhang D, Tang L, Gao Y et al. Efficient metal halide perovskite light-emitting diodes with significantly improved light extraction on nanophotonic substrates. Nat Commun 2019; 10. doi:10.1038/s41467-019-08561-y.198 Shen Y, Cheng LP, Li YQ, Li W, Chen J De, Lee ST et al. High-efficiency perovskite light-emitting diodes with synergetic outcoupling enhancement. Adv Mater 2019; 31. doi:10.1002/adma.201901517.199 Qu Y, Coburn C, Fan D, Forrest SR. Elimination of plasmon losses and enhanced light extraction of top-emitting organic light-emitting devices using a reflective subelectrode grid. ACS Photonics 2017; 4: 363–368.200 Hwang M, Kim C, Choi H, Chae H, Cho SM. Light extraction from surface plasmon polaritons and substrate/waveguide modes in organic light-emitting devices with silver-nanomesh electrodes. Opt Express 2016; 24: 29483.201 Fu X, Mehta Y, Chen YA, Lei L, Zhu L, Barange N et al. Directional polarized light emission from thin-film light-emitting diodes. Adv Mater 2021; 33. doi:10.1002/adma.202006801.202 Gu Y, Zhang DD, Ou QD, Deng YH, Zhu JJ, Cheng L et al. Light extraction enhancement in organic light-emitting diodes based on localized surface plasmon and light scattering double-effect. J Mater Chem C 2013; 1: 4319–4326.203 Zhang D, Xu J. Enhancing extraction efficiency of quantum dot light-emitting diodes introducing a highly wrinkled ZnO electron transport layer. Opt Lett 2020; 45: 2243.204 Oh JH, Choi DB, Lee KH, Yang H, Do YR. Enhanced light extraction from green quantum dot light-emitting diodes by attaching microstructure arrayed films. IEEE J Sel Top Quantum Electron 2016; 22: 42–47.205 Yang X, Dev K, Wang J, Mutlugun E, Dang C, Zhao Y et al. Light extraction efficiency enhancement of colloidal quantum dot light-emitting diodes using large-scale nanopillar arrays. Adv Funct Mater 2014; 24: 5977–5984.206 Lin J, Sun Q, Feng W, Guo S, Liu Z, Liang H et al. Enhancing the light extraction efficiency in micro‐organic light‐emitting diodes with metalens. Adv Photonics Res 2021; 2: 2000145.207 Chen Z, Li Z, Chen Z, Xia R, Zou G, Chu L et al. Utilization of trapped optical modes for white perovskite light-emitting diodes with efficiency over 12%. Joule 2021; 5: 456–466.208 Ding K, Fang Y, Dong S, Chen H, Luo B, Jiang K et al. 24.1% External quantum efficiency of flexible quantum dot light-emitting diodes by light extraction of silver nanowire transparent electrodes. Adv Opt Mater 2018; 6. doi:10.1002/adom.201800347.209 Zhang Q, Gu X, Chen Z, Jiang J, Zhang Z, Wei J et al. Enhancing extraction efficiency of quantum dot light-emitting diodes by surface engineering. Opt Express 2017; 25: 17683.210 Mao P, Liu C, Li X, Liu M, Chen Q, Han M et al. Single-step-fabricated disordered metasurfaces for enhanced light extraction from LEDs. Light Sci Appl 2021; 10. doi:10.1038/s41377-021-00621-7. |
来源库 | 人工提交
|
成果类型 | 学位论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/415489 |
专题 | 工学院_电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Mei GD. Optical Study of Quantum Dot and Perovskite Light-Emitting Diodes Based on Simulation[D]. 香港. 香港大学,2022.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
11850025-梅冠鼎-电子与电气工程(16994KB) | -- | -- | 限制开放 | -- | 请求全文 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[梅冠鼎]的文章 |
百度学术 |
百度学术中相似的文章 |
[梅冠鼎]的文章 |
必应学术 |
必应学术中相似的文章 |
[梅冠鼎]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论