中文版 | English
题名

Split-AE: An Autoencoder-based Disentanglement Framework for 3D Shape-to-shape Feature Transfer

作者
DOI
发表日期
2022
会议名称
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) / IEEE World Congress on Computational Intelligence (IEEE WCCI) / International Joint Conference on Neural Networks (IJCNN) / IEEE Congress on Evolutionary Computation (IEEE CEC)
ISSN
2161-4393
会议录名称
卷号
2022-July
会议日期
JUL 18-23, 2022
会议地点
null,Padua,ITALY
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Recent advancements in machine learning comprise generative models such as autoencoders (AE) for learning and compressing 3D data to generate low-dimensional latent representations of 3D shapes. Learning latent representations that disentangle the underlying factors of variations in 3D shapes is an intuitive way to achieve generalization in generative models. However, it remains an open problem to learn a generative model of 3D shapes such that the latent variables are disentangled and represent different interpretable aspects of 3D shapes. In this paper, we propose Split-AE, which is an autoencoder-based architecture for partitioning the latent space into two sets, named as content and style codes. The content code represents global features of 3D shapes to differentiate between semantic categories of shapes, while style code represents distinct visual features to differentiate between shape categories having similar semantic meaning. We present qualitative and quantitative experiments to verify feature disentanglement using our Split-AE. Further, we demonstrate that, given a source shape as an initial shape and a target shape as a style reference, the trained Split-AE combines the content of a source and style of a target shape to generate a novel augmented shape, that possesses the distinct features of the target shape category yet maintains the similarity of the global features with the source shape. We conduct a qualitative study showing that the augmented shapes exhibit a realistic interpretable mixture of content and style features across different shape classes with similar semantic meaning.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
WOS研究方向
Computer Science ; Engineering ; Neurosciences & Neurology
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic ; Neurosciences
WOS记录号
WOS:000867070907051
Scopus记录号
2-s2.0-85140714216
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/415601
专题工学院_计算机科学与工程系
作者单位
1.Honda Research Institute Europe,Offenbach,Germany
2.School of Computer Science,University of Birmingham,Birmingham,United Kingdom
3.SUSTech,Department of Computer Science and Engineering,China
推荐引用方式
GB/T 7714
Saha,Sneha,Minku,Leandro L.,Yao,Xin,et al. Split-AE: An Autoencoder-based Disentanglement Framework for 3D Shape-to-shape Feature Transfer[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Saha,Sneha]的文章
[Minku,Leandro L.]的文章
[Yao,Xin]的文章
百度学术
百度学术中相似的文章
[Saha,Sneha]的文章
[Minku,Leandro L.]的文章
[Yao,Xin]的文章
必应学术
必应学术中相似的文章
[Saha,Sneha]的文章
[Minku,Leandro L.]的文章
[Yao,Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。