题名 | Generalized Brain Image Synthesis with Transferable Convolutional Sparse Coding Networks |
作者 | |
通讯作者 | Feng Zheng; Yefeng Zheng |
DOI | |
发表日期 | 2022-10
|
会议名称 | European Conference on Computer Vision2022
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-031-19829-8
|
会议录名称 | |
卷号 | 13694
|
会议日期 | 2022/10/23-2022/10/27
|
会议地点 | 特拉维夫
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | High inter-equipment variability and expensive examination costs of brain imaging remain key challenges in leveraging the heterogeneous scans effectively. Despite rapid growth in image-to-image translation with deep learning models, the target brain data may not always be achievable due to the specific attributes of brain imaging. In this paper, we present a novel generalized brain image synthesis method, powered by our transferable convolutional sparse coding networks, to address the lack of interpretable cross-modal medical image representation learning. The proposed approach masters the ability to imitate the machine-like anatomically meaningful imaging by translating features directly under a series of mathematical processings, leading to the reduced domain discrepancy while enhancing model transferability. Specifically, we first embed the globally normalized features into a domain discrepancy metric to learn the domain-invariant representations, then optimally preserve domain-specific geometrical property to reflect the intrinsic graph structures, and further penalize their subspace mismatching to reduce the generalization error. The overall framework is cast in a minimax setting, and the extensive experiments show that the proposed method yields state-of-the-art results on multiple datasets. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
WOS研究方向 | Computer Science
; Imaging Science & Photographic Technology
|
WOS类目 | Computer Science, Artificial Intelligence
; Imaging Science & Photographic Technology
|
WOS记录号 | WOS:000903746100011
|
来源库 | 人工提交
|
出版状态 | 在线出版
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/415617 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.Tencent Jarvis Lab, Shenzhen, China 2.Southern University of Science and Technology, China 3.Terminus Group, Beijing, China |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Yawen Huang,Feng Zheng,Xu Sun,et al. Generalized Brain Image Synthesis with Transferable Convolutional Sparse Coding Networks[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论