中文版 | English
题名

Generalized Brain Image Synthesis with Transferable Convolutional Sparse Coding Networks

作者
通讯作者Feng Zheng; Yefeng Zheng
DOI
发表日期
2022-10
会议名称
European Conference on Computer Vision2022
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-031-19829-8
会议录名称
卷号
13694
会议日期
2022/10/23-2022/10/27
会议地点
特拉维夫
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要

High inter-equipment variability and expensive examination costs of brain imaging remain key challenges in leveraging the heterogeneous scans effectively. Despite rapid growth in image-to-image translation with deep learning models, the target brain data may not always be achievable due to the specific attributes of brain imaging. In this paper, we present a novel generalized brain image synthesis method, powered by our transferable convolutional sparse coding networks, to address the lack of interpretable cross-modal medical image representation learning. The proposed approach masters the ability to imitate the machine-like anatomically meaningful imaging by translating features directly under a series of mathematical processings, leading to the reduced domain discrepancy while enhancing model transferability. Specifically, we first embed the globally normalized features into a domain discrepancy metric to learn the domain-invariant representations, then optimally preserve domain-specific geometrical property to reflect the intrinsic graph structures, and further penalize their subspace mismatching to reduce the generalization error. The overall framework is cast in a minimax setting, and the extensive experiments show that the proposed method yields state-of-the-art results on multiple datasets.

关键词
学校署名
通讯
语种
英语
相关链接[来源记录]
收录类别
WOS研究方向
Computer Science ; Imaging Science & Photographic Technology
WOS类目
Computer Science, Artificial Intelligence ; Imaging Science & Photographic Technology
WOS记录号
WOS:000903746100011
来源库
人工提交
出版状态
在线出版
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/415617
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Tencent Jarvis Lab, Shenzhen, China
2.Southern University of Science and Technology, China
3.Terminus Group, Beijing, China
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Yawen Huang,Feng Zheng,Xu Sun,et al. Generalized Brain Image Synthesis with Transferable Convolutional Sparse Coding Networks[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yawen Huang]的文章
[Feng Zheng]的文章
[Xu Sun]的文章
百度学术
百度学术中相似的文章
[Yawen Huang]的文章
[Feng Zheng]的文章
[Xu Sun]的文章
必应学术
必应学术中相似的文章
[Yawen Huang]的文章
[Feng Zheng]的文章
[Xu Sun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。