中文版 | English
题名

FedMed-ATL: Misaligned Unpaired Cross-Modality Neuroimage Synthesis via Affine Transform Loss

作者
通讯作者Feng Zheng
共同第一作者Jinbao Wang; Guoyang Xie; Yawen Huang
DOI
发表日期
2022-07-17
会议名称
The 30th ACM International Conference on Multimedia
会议日期
2022/10/10-2022/10/14
会议地点
里斯本
摘要

The existence of completely aligned and paired multi-modal neuroimaging data has proved its effectiveness in the diagnosis of brain diseases. However, collecting the full set of well-aligned and paired data is impractical, since the practical difficulties may include high cost, long time acquisition, image corruption, and privacy issues. Previously, the misaligned unpaired neuroimaging data (termed as MUD) are generally treated as noisy labels. However, such a noisy label-based method fails to accomplish well when misaligned data occurs distortions severely. For example, the angle of rotation is different. In this paper, we propose a novel federated self-supervised learning (FedMed) for brain image synthesis. An affine transform loss (ATL) was formulated to make use of severely distorted images without violating privacy legislation for the hospital. We then introduce a new data augmentation procedure for self-supervised training and fed it into three auxiliary heads, namely auxiliary rotation, auxiliary translation, and auxiliary scaling heads. The proposed method demonstrates the advanced performance in both the quality of our synthesized results under a severely misaligned and unpaired data setting, and better stability than other GAN-based algorithms. The proposed method also reduces the demand for deformable registration while encouraging to leverage the misaligned and unpaired data. Experimental results verify the outstanding performance of our learning paradigm compared to other state-of-the-art approaches.

学校署名
第一 ; 共同第一 ; 通讯
语种
英语
来源库
人工提交
出版状态
在线出版
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/415622
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Southern University of Science and Technology, China
2.University of Surrey Guildford GU2 7XH, UK
3.Tencent Jarvis Lab, Shenzhen, China
4.Bielefeld University 33619 Bielefeld, Germany
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Jinbao Wang,Guoyang Xie,Yawen Huang,et al. FedMed-ATL: Misaligned Unpaired Cross-Modality Neuroimage Synthesis via Affine Transform Loss[C],2022.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jinbao Wang]的文章
[Guoyang Xie]的文章
[Yawen Huang]的文章
百度学术
百度学术中相似的文章
[Jinbao Wang]的文章
[Guoyang Xie]的文章
[Yawen Huang]的文章
必应学术
必应学术中相似的文章
[Jinbao Wang]的文章
[Guoyang Xie]的文章
[Yawen Huang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。