题名 | S^2Contact: Graph-based Network for 3D Hand-Object Contact Estimation with Semi-Supervised Learning |
作者 | |
共同第一作者 | Zhongqun Zhang |
DOI | |
发表日期 | 2022-10-23
|
会议名称 | European Conference on Computer Vision2022
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-031-19768-0
|
会议录名称 | |
卷号 | 13661
|
会议日期 | 2022/10/23-2022/10/27
|
会议地点 | 特拉维夫
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | Despite the recent efforts in accurate 3D annotations in hand and object datasets, there still exist gaps in 3D hand and object reconstructions. Existing works leverage contact maps to refine inaccurate hand-object pose estimations and generate grasps given object models. However, they require explicit 3D supervision which is seldom available and therefore, are limited to constrained settings, e.g., where thermal cameras observe residual heat left on manipulated objects. In this paper, we propose a novel semi-supervised framework that allows us to learn contact from monocular images. Specifically, we leverage visual and geometric consistency constraints in large-scale datasets for generating pseudo-labels in semi-supervised learning and propose an efficient graph-based network to infer contact. Our semi-supervised learning framework achieves a favourable improvement over the existing supervised learning methods trained on data with ‘limited’ annotations. Notably, our proposed model is able to achieve superior results with less than half the network parameters and memory access cost when compared with the commonly-used PointNet-based approach. We show benefits from using a contact map that rules hand-object interactions to produce more accurate reconstructions. We further demonstrate that training with pseudo-labels can extend contact map estimations to out-of-domain objects and generalise better across multiple datasets. Project page is available (https://eldentse.github.io/s2contact/). |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program[IITP-2022-2020-0-01789]
; UKRI[
|
WOS研究方向 | Computer Science
; Imaging Science & Photographic Technology
|
WOS类目 | Computer Science, Artificial Intelligence
; Imaging Science & Photographic Technology
|
WOS记录号 | WOS:000898293500033
|
来源库 | 人工提交
|
出版状态 | 在线出版
|
引用统计 |
被引频次[WOS]:9
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/415626 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.University of Birmingham, UK 2.UNIST, Korea 3.Southern University of Science and Technology, China |
推荐引用方式 GB/T 7714 |
Tze Ho Elden Tse,Zhongqun Zhang,Kwang In Kim,et al. S^2Contact: Graph-based Network for 3D Hand-Object Contact Estimation with Semi-Supervised Learning[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论