中文版 | English
题名

S^2Contact: Graph-based Network for 3D Hand-Object Contact Estimation with Semi-Supervised Learning

作者
共同第一作者Zhongqun Zhang
DOI
发表日期
2022-10-23
会议名称
European Conference on Computer Vision2022
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-031-19768-0
会议录名称
卷号
13661
会议日期
2022/10/23-2022/10/27
会议地点
特拉维夫
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要

Despite the recent efforts in accurate 3D annotations in hand and object datasets, there still exist gaps in 3D hand and object reconstructions. Existing works leverage contact maps to refine inaccurate hand-object pose estimations and generate grasps given object models. However, they require explicit 3D supervision which is seldom available and therefore, are limited to constrained settings, e.g., where thermal cameras observe residual heat left on manipulated objects. In this paper, we propose a novel semi-supervised framework that allows us to learn contact from monocular images. Specifically, we leverage visual and geometric consistency constraints in large-scale datasets for generating pseudo-labels in semi-supervised learning and propose an efficient graph-based network to infer contact. Our semi-supervised learning framework achieves a favourable improvement over the existing supervised learning methods trained on data with ‘limited’ annotations. Notably, our proposed model is able to achieve superior results with less than half the network parameters and memory access cost when compared with the commonly-used PointNet-based approach. We show benefits from using a contact map that rules hand-object interactions to produce more accurate reconstructions. We further demonstrate that training with pseudo-labels can extend contact map estimations to out-of-domain objects and generalise better across multiple datasets. Project page is available (https://eldentse.github.io/s2contact/).

学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program[IITP-2022-2020-0-01789] ; UKRI[
WOS研究方向
Computer Science ; Imaging Science & Photographic Technology
WOS类目
Computer Science, Artificial Intelligence ; Imaging Science & Photographic Technology
WOS记录号
WOS:000898293500033
来源库
人工提交
出版状态
在线出版
引用统计
被引频次[WOS]:9
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/415626
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.University of Birmingham, UK
2.UNIST, Korea
3.Southern University of Science and Technology, China
推荐引用方式
GB/T 7714
Tze Ho Elden Tse,Zhongqun Zhang,Kwang In Kim,et al. S^2Contact: Graph-based Network for 3D Hand-Object Contact Estimation with Semi-Supervised Learning[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Tze Ho Elden Tse]的文章
[Zhongqun Zhang]的文章
[Kwang In Kim]的文章
百度学术
百度学术中相似的文章
[Tze Ho Elden Tse]的文章
[Zhongqun Zhang]的文章
[Kwang In Kim]的文章
必应学术
必应学术中相似的文章
[Tze Ho Elden Tse]的文章
[Zhongqun Zhang]的文章
[Kwang In Kim]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。