中文版 | English
题名

Eikonal Tomography With Physics-Informed Neural Networks: Rayleigh Wave Phase Velocity in the Northeastern Margin of the Tibetan Plateau

作者
通讯作者Chen,Yongshun
发表日期
2022-11-16
DOI
发表期刊
ISSN
0094-8276
EISSN
1944-8007
卷号49期号:21
摘要

We present a novel eikonal tomography approach using physics-informed neural networks (PINNs) for Rayleigh wave phase velocities based on the eikonal equation. The PINN eikonal tomography (pinnET) neural network utilizes deep neural networks as universal function approximators and extracts traveltimes and velocities of the medium during the optimization process. Whereas classical eikonal tomography uses a generic non-physics based interpolation and regularization step to reconstruct traveltime surfaces, optimizing the network parameters in pinnET means solving a physics constrained traveltime surface reconstruction inversion tackling measurement noise and satisfying physics. We demonstrate this approach by applying it to 25 s surface wave data from ChinArray II sampling the northeastern Tibetan plateau. We validate our results by comparing them to results from conventional eikonal tomography in the same area and find good agreement.

关键词
相关链接[Scopus记录]
收录类别
语种
英语
重要成果
NI论文
学校署名
通讯
资助项目
National Natural Science Foundation of China[41890814] ; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)[GML2019ZD0210] ; National Natural Science Foundation of China[U1901602]
WOS研究方向
Geology
WOS类目
Geosciences, Multidisciplinary
WOS记录号
WOS:000888197000001
出版者
ESI学科分类
GEOSCIENCES
Scopus记录号
2-s2.0-85141937323
来源库
Scopus
引用统计
被引频次[WOS]:12
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/415750
专题工学院_海洋科学与工程系
作者单位
1.School of Earth and Environment,University of Leeds,Leeds,United Kingdom
2.Department of Ocean Science and Engineering,Southern University of Science and Technology,Shenzhen,China
3.Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou),Guangzhou,China
第一作者单位海洋科学与工程系
通讯作者单位海洋科学与工程系
推荐引用方式
GB/T 7714
Chen,Yunpeng,de Ridder,Sjoerd A.L.,Rost,Sebastian,et al. Eikonal Tomography With Physics-Informed Neural Networks: Rayleigh Wave Phase Velocity in the Northeastern Margin of the Tibetan Plateau[J]. GEOPHYSICAL RESEARCH LETTERS,2022,49(21).
APA
Chen,Yunpeng,de Ridder,Sjoerd A.L.,Rost,Sebastian,Guo,Zhen,Wu,Xiaoyang,&Chen,Yongshun.(2022).Eikonal Tomography With Physics-Informed Neural Networks: Rayleigh Wave Phase Velocity in the Northeastern Margin of the Tibetan Plateau.GEOPHYSICAL RESEARCH LETTERS,49(21).
MLA
Chen,Yunpeng,et al."Eikonal Tomography With Physics-Informed Neural Networks: Rayleigh Wave Phase Velocity in the Northeastern Margin of the Tibetan Plateau".GEOPHYSICAL RESEARCH LETTERS 49.21(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen,Yunpeng]的文章
[de Ridder,Sjoerd A.L.]的文章
[Rost,Sebastian]的文章
百度学术
百度学术中相似的文章
[Chen,Yunpeng]的文章
[de Ridder,Sjoerd A.L.]的文章
[Rost,Sebastian]的文章
必应学术
必应学术中相似的文章
[Chen,Yunpeng]的文章
[de Ridder,Sjoerd A.L.]的文章
[Rost,Sebastian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。