中文版 | English
题名

A Fall Detection Network by 2D/3D Spatio-temporal Joint Models with Tensor Compression on Edge

作者
通讯作者Hao,Yu
发表日期
2022-04-30
DOI
发表期刊
ISSN
1539-9087
EISSN
1558-3465
卷号21期号:6
摘要

Falling is ranked highly among the threats in elderly healthcare, which promotes the development of automatic fall detection systems with extensive concern. With the fast development of the Internet of Things (IoT) and Artificial Intelligence (AI), camera vision-based solutions have drawn much attention for single-frame prediction and video understanding on fall detection in the elderly by using Convolutional Neural Network (CNN) and 3D-CNN, respectively. However, these methods hardly supervise the intermediate features with good accurate and efficient performance on edge devices, which makes the system difficult to be applied in practice. This work introduces a fast and lightweight video fall detection network based on a spatio-temporal joint-point model to overcome these hurdles. Instead of detecting fall motion by the traditional CNNs, we propose a Long Short-Term Memory (LSTM) model based on time-series joint- point features extracted from a pose extractor. We also introduce the increasingly mature RGB-D camera and propose 3D pose estimation network to further improve the accuracy of the system. We propose to apply tensor train decomposition on the model to reduce storage and computational consumption so the deployment on edge devices can to realized. Experiments are conducted to verify the proposed framework. For fall detection task, the proposed video fall detection framework achieves a high sensitivity of 98.46% on Multiple Cameras Fall, 100% on UR Fall, and 98.01% on NTU RGB-D 120. For pose estimation task, our 2D model attains 73.3 mAP in the COCO keypoint challenge, which outperforms the OpenPose by 8%. Our 3D model attains 78.6% mAP on NTU RGB-D dataset with 3.6x faster speed than OpenPose.

关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China (NSFC)[6203000189] ; Shenzhen Science and Technology Program[KQTD2020020113051096] ; Innovative Team Program of Education Department of Guangdong Province[2018KCXTD028]
WOS研究方向
Computer Science
WOS类目
Computer Science, Hardware & Architecture ; Computer Science, Software Engineering
WOS记录号
WOS:000895635900017
出版者
来源库
人工提交
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/415766
专题南方科技大学
工学院_深港微电子学院
作者单位
Southern University of Science and Technology
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Shuwei,Li,Changhai,Man,Ao,Shen,et al. A Fall Detection Network by 2D/3D Spatio-temporal Joint Models with Tensor Compression on Edge[J]. ACM Transactions on Embedded Computing Systems,2022,21(6).
APA
Shuwei,Li.,Changhai,Man.,Ao,Shen.,Ziyi,Guan.,Wei,Mao.,...&Hao,Yu.(2022).A Fall Detection Network by 2D/3D Spatio-temporal Joint Models with Tensor Compression on Edge.ACM Transactions on Embedded Computing Systems,21(6).
MLA
Shuwei,Li,et al."A Fall Detection Network by 2D/3D Spatio-temporal Joint Models with Tensor Compression on Edge".ACM Transactions on Embedded Computing Systems 21.6(2022).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
J105.A Fall Detectio(7063KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shuwei,Li]的文章
[Changhai,Man]的文章
[Ao,Shen]的文章
百度学术
百度学术中相似的文章
[Shuwei,Li]的文章
[Changhai,Man]的文章
[Ao,Shen]的文章
必应学术
必应学术中相似的文章
[Shuwei,Li]的文章
[Changhai,Man]的文章
[Ao,Shen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。