题名 | Error-Based Knockoffs Inference for Controlled Feature Selection |
作者 | |
通讯作者 | Hong Chen |
发表日期 | 2022
|
会议名称 | 36th AAAI Conference on Artificial Intelligence / 34th Conference on Innovative Applications of Artificial Intelligence / 12th Symposium on Educational Advances in Artificial Intelligence
|
ISSN | 2159-5399
|
EISSN | 2374-3468
|
会议录名称 | |
会议日期 | FEB 22-MAR 01, 2022
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA
|
出版者 | |
摘要 | Recently, the scheme of model-X knockoffs was proposed as a promising solution to address controlled feature selection under high-dimensional finite-sample settings. However, the procedure of model-X knockoffs depends heavily on the coefficient-based feature importance and only concerns the control of false discovery rate (FDR). To further improve its adaptivity and flexibility, in this paper, we propose an error-based knockoff inference method by integrating the knockoff features, the error-based feature importance statistics, and the stepdown procedure together. The proposed inference procedure does not require specifying a regression model and can handle feature selection with theoretical guarantees on controlling false discovery proportion (FDP), FDR, or k-familywise error rate (k-FWER). Empirical evaluations demonstrate the competitive performance of our approach on both simulated and real data. |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China["12071166","62076041","61702057","61806027","61972188","62106191"]
; Fundamental Research Funds for the Central Universities of China[2662020LXQD002]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
|
WOS记录号 | WOS:000893639102024
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/415789 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.College of Science, Huazhong Agricultural University, Wuhan 430062, China 2.College of Informatics, Huazhong Agricultural University, Wuhan 430062, China 3.School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China 4.Southern University of Science and Technology, China |
推荐引用方式 GB/T 7714 |
Xuebin Zhao,Hong Chen,Yingjie Wang,et al. Error-Based Knockoffs Inference for Controlled Feature Selection[C]. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE,2022.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论