中文版 | English
题名

GuidedMix-Net: Semi-Supervised Semantic Segmentation by Using Labeled Images as Reference

作者
通讯作者Feng Zheng
发表日期
2022
会议名称
36th AAAI Conference on Artificial Intelligence / 34th Conference on Innovative Applications of Artificial Intelligence / 12th Symposium on Educational Advances in Artificial Intelligence
ISSN
2159-5399
EISSN
2374-3468
会议录名称
会议日期
FEB 22-MAR 01, 2022
会议地点
null,null,ELECTR NETWORK
出版地
2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA
出版者
摘要
Semi-supervised learning is a challenging problem which aims to construct a model by learning from limited labeled examples. Numerous methods for this task focus on utilizing the predictions of unlabeled instances consistency alone to regularize networks. However, treating labeled and unlabeled data separately often leads to the discarding of mass prior knowledge learned from the labeled examples. In this paper, we propose a novel method for semi-supervised semantic segmentation named GuidedMix-Net, by leveraging labeled information to guide the learning of unlabeled instances. Specifically, GuidedMix-Net employs three operations: 1) interpolation of similar labeled-unlabeled image pairs; 2) transfer of mutual information; 3) generalization of pseudo masks. It enables segmentation models can learning the higher-quality pseudo masks of unlabeled data by transfer the knowledge from labeled samples to unlabeled data. Along with supervised learning for labeled data, the prediction of unlabeled data is jointly learned with the generated pseudo masks from the mixed data. Extensive experiments on PASCAL VOC 2012, and Cityscapes demonstrate the effectiveness of our GuidedMix-Net, which achieves competitive segmentation accuracy and significantly improves the mIoU over 7% compared to previous approaches.
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Natural Science Foundation of China["61972188","62122035"]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000893636202051
来源库
Web of Science
引用统计
被引频次[WOS]:15
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/415790
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Southern University of Science and Technology, China
2.Shenzhen Microbt Electronics Technology Co., Ltd, China
3.Tencent Jarvis Lab, Shenzhen, China
4.Harbin Institute of Technology, Shenzhen, China
5.Xiamen University, Xiamen, China
6.National Center for Artificial Intelligence, Saudi Data and Artificial Intelligence Authority, Riyadh, Saudi Arabia
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Peng Tu,Yawen Huang,Feng Zheng,et al. GuidedMix-Net: Semi-Supervised Semantic Segmentation by Using Labeled Images as Reference[C]. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE,2022.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Peng Tu]的文章
[Yawen Huang]的文章
[Feng Zheng]的文章
百度学术
百度学术中相似的文章
[Peng Tu]的文章
[Yawen Huang]的文章
[Feng Zheng]的文章
必应学术
必应学术中相似的文章
[Peng Tu]的文章
[Yawen Huang]的文章
[Feng Zheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。