中文版 | English
题名

VITA: A Multi-Source Vicinal Transfer Augmentation Method for Out-of-Distribution Generalization

作者
通讯作者Feng Zheng
发表日期
2022
会议名称
36th AAAI Conference on Artificial Intelligence / 34th Conference on Innovative Applications of Artificial Intelligence / 12th Symposium on Educational Advances in Artificial Intelligence
ISSN
2159-5399
EISSN
2374-3468
会议录名称
会议日期
FEB 22-MAR 01, 2022
会议地点
null,null,ELECTR NETWORK
出版地
2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA
出版者
摘要
Invariance to diverse types of image corruption, such as noise, blurring, or colour shifts, is essential to establish robust models in computer vision. Data augmentation has been the major approach in improving the robustness against common corruptions. However, the samples produced by popular augmentation strategies deviate significantly from the underlying data manifold. As a result, performance is skewed toward certain types of corruption. To address this issue, we propose a multi-source vicinal transfer augmentation (VITA) method for generating diverse on-manifold samples. The proposed VITA consists of two complementary parts: tangent transfer and integration of multi-source vicinal samples. The tangent transfer creates initial augmented samples for improving corruption robustness. The integration employs a generative model to characterize the underlying manifold built by vicinal samples, facilitating the generation of on-manifold samples. Our proposed VITA significantly outperforms the current state-of-the-art augmentation methods, demonstrated in extensive experiments on corruption benchmarks.
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Natural Science Foundation of China["61972188","62122035"] ; National Key R&D Program of China[2021ZD0111700]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000893636200036
来源库
Web of Science
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/415792
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Southern University of Science and Technology, China
2.The University of Sydney
3.JD Explore Academy, JD.com Inc
4.National Center for Artificial Intelligence, Saudi Data and Artificial Intelligence Authority, Riyadh, Saudi Arabia
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Minghui Chen,Cheng Wen,Feng Zheng,et al. VITA: A Multi-Source Vicinal Transfer Augmentation Method for Out-of-Distribution Generalization[C]. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE,2022.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Minghui Chen]的文章
[Cheng Wen]的文章
[Feng Zheng]的文章
百度学术
百度学术中相似的文章
[Minghui Chen]的文章
[Cheng Wen]的文章
[Feng Zheng]的文章
必应学术
必应学术中相似的文章
[Minghui Chen]的文章
[Cheng Wen]的文章
[Feng Zheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。