中文版 | English
题名

Adaptive Environment Modeling Based Reinforcement Learning for Collision Avoidance in Complex Scenes

作者
通讯作者Rui Gao; Qi Hao
DOI
发表日期
2022
会议名称
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
ISSN
2153-0858
ISBN
978-1-6654-7928-8
会议录名称
页码
9011-9018
会议日期
OCT 23-27, 2022
会议地点
null,Kyoto,JAPAN
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
The major challenges of collision avoidance for robot navigation in crowded scenes lie in accurate environment modeling, fast perceptions, and trustworthy motion planning policies. This paper presents a novel adaptive environment model based collision avoidance reinforcement learning (i.e., AEMCARL) framework for an unmanned robot to achieve collision-free motions in challenging navigation scenarios. The novelty of this work is threefold: (1) developing a hierarchical network of gated-recurrent-unit (GRU) for environment modeling; (2) developing an adaptive perception mechanism with an attention module; (3) developing an adaptive reward function for the reinforcement learning (RL) framework to jointly train the environment model, perception function and motion planning policy. The proposed method is tested with the Gym-Gazebo simulator and a group of robots (Husky and Turtlebot) under various crowded scenes. Both simulation and experimental results have demonstrated the superior performance of the proposed method over baseline methods.
关键词
学校署名
通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
Science and Technology Innovation Committee of Shenzhen City[JCYJ20200109141622964]
WOS研究方向
Automation & Control Systems ; Computer Science ; Engineering ; Robotics
WOS类目
Automation & Control Systems ; Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Robotics
WOS记录号
WOS:000909405301088
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9982107
引用统计
被引频次[WOS]:8
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/415794
专题工学院_计算机科学与工程系
工学院
作者单位
1.Harbin Inst Technol, Harbin, Heilongjiang, Peoples R China
2.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China
3.Univ Hongkong, Dept Comp Sci, Hong Kong 999077, Peoples R China
4.Southern Univ Sci & Technol, Rsearch Inst Trustworthy Autonomous Syst, Shenzhen, Guangdong, Peoples R China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系;  南方科技大学
推荐引用方式
GB/T 7714
Shuaijun Wang,Rui Gao,Ruihua Han,et al. Adaptive Environment Modeling Based Reinforcement Learning for Collision Avoidance in Complex Scenes[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:9011-9018.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
69Adaptive Environme(994KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shuaijun Wang]的文章
[Rui Gao]的文章
[Ruihua Han]的文章
百度学术
百度学术中相似的文章
[Shuaijun Wang]的文章
[Rui Gao]的文章
[Ruihua Han]的文章
必应学术
必应学术中相似的文章
[Shuaijun Wang]的文章
[Rui Gao]的文章
[Ruihua Han]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。