题名 | Adaptive Environment Modeling Based Reinforcement Learning for Collision Avoidance in Complex Scenes |
作者 | |
通讯作者 | Rui Gao; Qi Hao |
DOI | |
发表日期 | 2022
|
会议名称 | IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
|
ISSN | 2153-0858
|
ISBN | 978-1-6654-7928-8
|
会议录名称 | |
页码 | 9011-9018
|
会议日期 | OCT 23-27, 2022
|
会议地点 | null,Kyoto,JAPAN
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | The major challenges of collision avoidance for robot navigation in crowded scenes lie in accurate environment modeling, fast perceptions, and trustworthy motion planning policies. This paper presents a novel adaptive environment model based collision avoidance reinforcement learning (i.e., AEMCARL) framework for an unmanned robot to achieve collision-free motions in challenging navigation scenarios. The novelty of this work is threefold: (1) developing a hierarchical network of gated-recurrent-unit (GRU) for environment modeling; (2) developing an adaptive perception mechanism with an attention module; (3) developing an adaptive reward function for the reinforcement learning (RL) framework to jointly train the environment model, perception function and motion planning policy. The proposed method is tested with the Gym-Gazebo simulator and a group of robots (Husky and Turtlebot) under various crowded scenes. Both simulation and experimental results have demonstrated the superior performance of the proposed method over baseline methods. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | Science and Technology Innovation Committee of Shenzhen City[JCYJ20200109141622964]
|
WOS研究方向 | Automation & Control Systems
; Computer Science
; Engineering
; Robotics
|
WOS类目 | Automation & Control Systems
; Computer Science, Artificial Intelligence
; Engineering, Electrical & Electronic
; Robotics
|
WOS记录号 | WOS:000909405301088
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9982107 |
引用统计 |
被引频次[WOS]:8
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/415794 |
专题 | 工学院_计算机科学与工程系 工学院 |
作者单位 | 1.Harbin Inst Technol, Harbin, Heilongjiang, Peoples R China 2.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China 3.Univ Hongkong, Dept Comp Sci, Hong Kong 999077, Peoples R China 4.Southern Univ Sci & Technol, Rsearch Inst Trustworthy Autonomous Syst, Shenzhen, Guangdong, Peoples R China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系; 南方科技大学 |
推荐引用方式 GB/T 7714 |
Shuaijun Wang,Rui Gao,Ruihua Han,et al. Adaptive Environment Modeling Based Reinforcement Learning for Collision Avoidance in Complex Scenes[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:9011-9018.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
69Adaptive Environme(994KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论