题名 | A High-Accuracy Crack Defect Detection Based on Fully Convolutional Network Applied to Building Quality Inspection Robot |
作者 | |
通讯作者 | Wentao Zhang |
DOI | |
发表日期 | 2022-07-09
|
会议名称 | IEEE-ARM
|
ISBN | 978-1-6654-8307-0
|
会议录名称 | |
页码 | 63-68
|
会议日期 | 2022年7月9-11日
|
会议地点 | 桂林
|
摘要 | Crack defect detection plays a significant role in the industry, especially in construction. This paper proposes a high accuracy detection method based on the improved fully convolutional network (FCN), which can be used in the building quality inspection robot. After building the map, an algorithm based on topology is applied to recognize the contour of the house, plan the path and take photos. The up-sampling method is improved based on the existing network structure, and a crack detection model is built. A Deepcrack dataset is used to train the model and tested with 100 images in various scenes. Experimental results with mean-IoU of 48.27% and accuracy of 92.81% indicate that the proposed detection model can accurately detect the cracks at the pixel-wise level. |
关键词 | |
学校署名 | 其他
|
相关链接 | [IEEE记录] |
来源库 | 人工提交
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9959693 |
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/416007 |
专题 | 南方科技大学 工学院_机械与能源工程系 |
作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Wentao Zhang,Haoran Kang,Wenhui Wang,et al. A High-Accuracy Crack Defect Detection Based on Fully Convolutional Network Applied to Building Quality Inspection Robot[C],2022:63-68.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
A_High-accuracy_Crac(1308KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论