中文版 | English
题名

MCI-frcnn: A deep learning method for topological micro-domain boundary detection

作者
通讯作者Simon Zhongyuan,Tian; Melissa J. Fullwood; Meizhen Zheng
发表日期
2022-11-30
DOI
发表期刊
ISSN
2296-634X
卷号10
摘要

Chromatin structural domains, or topologically associated domains (TADs), are a general organizing principle in chromatin biology. RNA polymerase II (RNAPII) mediates multiple chromatin interactive loops, tethering together as RNAPIIassociated chromatin interaction domains (RAIDs) to offer a framework for gene regulation. RAID and TAD alterations have been found to be associated with diseases. They can be further dissected as micro-domains (micro-TADs and micro-RAIDs) by clustering single-molecule chromatin-interactive complexes from next-generation three-dimensional (3D) genome techniques, such as ChIA-Drop. Currently, there are few tools available for micro-domain boundary identification. In this work, we developed the MCIfrcnn deep learning method to train a Faster Region-based Convolutional Neural Network (Faster R-CNN) for micro-domain boundary detection. At the training phase in MCI-frcnn, 50 images of RAIDs from Drosophila RNAPII ChIA-Drop data, containing 261 micro-RAIDs with ground truth boundaries, were trained for 7 days. Using this well-trained MCI-frcnn, we detected microRAID boundaries for the input new images, with a fast speed (5.26 fps), high recognition accuracy (AUROC = 0.85, mAP = 0.69), and high boundary region quantification (genomic IoU = 76%). We further applied MCI-frcnn to detect human micro-TADs boundaries using human GM12878 SPRITE data and obtained a high region quantification score (mean gIoU = 85%). In all, the MCI-frcnn deep learning method which we developed in this work is a general tool for micro-domain boundary detection.

关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
National Key R&D Program of China[32170644] ; Shenzhen Fundamental Research Programme[20222YFC3400400] ; Shenzhen Innovation Committee of Science and Technology[JCYJ20220530115211026] ; National Research Foundation Singapore[ZDSYS20200811144002008] ; [T2EP30120-0020]
WOS研究方向
Cell Biology ; Developmental Biology
WOS类目
Cell Biology ; Developmental Biology
WOS记录号
WOS:000901534200001
出版者
来源库
人工提交
出版状态
正式出版
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/416015
专题生命科学学院
生命科学学院_生物系
作者单位
1.Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
2.School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
3.Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
4.Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
第一作者单位生命科学学院
通讯作者单位生命科学学院
第一作者的第一单位生命科学学院
推荐引用方式
GB/T 7714
Simon Zhongyuan,Tian,Pengfei Yin,Kai Jing,et al. MCI-frcnn: A deep learning method for topological micro-domain boundary detection[J]. Frontiers in Cell and Developmental Biology,2022,10.
APA
Simon Zhongyuan,Tian.,Pengfei Yin.,Kai Jing.,Yang Yang.,Yewen Xu.,...&Meizhen Zheng.(2022).MCI-frcnn: A deep learning method for topological micro-domain boundary detection.Frontiers in Cell and Developmental Biology,10.
MLA
Simon Zhongyuan,Tian,et al."MCI-frcnn: A deep learning method for topological micro-domain boundary detection".Frontiers in Cell and Developmental Biology 10(2022).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
fcell-10-1050769 (1)(4821KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Simon Zhongyuan,Tian]的文章
[Pengfei Yin]的文章
[Kai Jing]的文章
百度学术
百度学术中相似的文章
[Simon Zhongyuan,Tian]的文章
[Pengfei Yin]的文章
[Kai Jing]的文章
必应学术
必应学术中相似的文章
[Simon Zhongyuan,Tian]的文章
[Pengfei Yin]的文章
[Kai Jing]的文章
相关权益政策
暂无数据
收藏/分享
文件名: fcell-10-1050769 (1).pdf
格式: Adobe PDF
文件名: fcell-10-1050769 (1).pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。