中文版 | English
题名

Deep learning for computational cytology: A survey

作者
通讯作者Hao Chen
发表日期
2023-02
DOI
发表期刊
ISSN
1361-8415
EISSN
1361-8423
卷号84期号:84
摘要

Computational cytology is a critical, rapid-developing, yet challenging topic in medical image computing concerned with analyzing digitized cytology images by computer-aided technologies for cancer screening. Recently, an increasing number of deep learning (DL) approaches have made significant achievements in medical image analysis, leading to boosting publications of cytological studies. In this article, we survey more than 120 publications of DL-based cytology image analysis to investigate the advanced methods and comprehensive applications. We first introduce various deep learning schemes, including fully supervised, weakly supervised, unsupervised, and transfer learning. Then, we systematically summarize public datasets, evaluation metrics, versatile cytology image analysis applications including cell classification, slide-level cancer screening, nuclei or cell detection and segmentation. Finally, we discuss current challenges and potential research directions of computational cytology.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
null[BICI22EG01]
WOS研究方向
Computer Science ; Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000913159100006
出版者
EI入藏号
20224813187492
EI主题词
Classification (of information) ; Computer aided analysis ; Computer aided diagnosis ; Cytology ; Deep learning ; Diseases ; Image analysis ; Image segmentation ; Medical imaging
EI分类号
Biomedical Engineering:461.1 ; Biological Materials and Tissue Engineering:461.2 ; Ergonomics and Human Factors Engineering:461.4 ; Biology:461.9 ; Information Theory and Signal Processing:716.1 ; Computer Applications:723.5 ; Imaging Techniques:746 ; Information Sources and Analysis:903.1
ESI学科分类
COMPUTER SCIENCE
来源库
人工提交
出版状态
在线出版
引用统计
被引频次[WOS]:30
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/416047
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
2.Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
3.Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
4.School of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
5.Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
推荐引用方式
GB/T 7714
Hao Jiang,Yanning Zhou,Yi Lin,et al. Deep learning for computational cytology: A survey[J]. MEDICAL IMAGE ANALYSIS,2023,84(84).
APA
Hao Jiang,Yanning Zhou,Yi Lin,Ronald C.K.Chan,Jiang Liu,&Hao Chen.(2023).Deep learning for computational cytology: A survey.MEDICAL IMAGE ANALYSIS,84(84).
MLA
Hao Jiang,et al."Deep learning for computational cytology: A survey".MEDICAL IMAGE ANALYSIS 84.84(2023).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Deep learning for co(2648KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hao Jiang]的文章
[Yanning Zhou]的文章
[Yi Lin]的文章
百度学术
百度学术中相似的文章
[Hao Jiang]的文章
[Yanning Zhou]的文章
[Yi Lin]的文章
必应学术
必应学术中相似的文章
[Hao Jiang]的文章
[Yanning Zhou]的文章
[Yi Lin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。