题名 | Deep learning for computational cytology: A survey |
作者 | |
通讯作者 | Hao Chen |
发表日期 | 2023-02
|
DOI | |
发表期刊 | |
ISSN | 1361-8415
|
EISSN | 1361-8423
|
卷号 | 84期号:84 |
摘要 | Computational cytology is a critical, rapid-developing, yet challenging topic in medical image computing concerned with analyzing digitized cytology images by computer-aided technologies for cancer screening. Recently, an increasing number of deep learning (DL) approaches have made significant achievements in medical image analysis, leading to boosting publications of cytological studies. In this article, we survey more than 120 publications of DL-based cytology image analysis to investigate the advanced methods and comprehensive applications. We first introduce various deep learning schemes, including fully supervised, weakly supervised, unsupervised, and transfer learning. Then, we systematically summarize public datasets, evaluation metrics, versatile cytology image analysis applications including cell classification, slide-level cancer screening, nuclei or cell detection and segmentation. Finally, we discuss current challenges and potential research directions of computational cytology. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | null[BICI22EG01]
|
WOS研究方向 | Computer Science
; Engineering
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Interdisciplinary Applications
; Engineering, Biomedical
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS记录号 | WOS:000913159100006
|
出版者 | |
EI入藏号 | 20224813187492
|
EI主题词 | Classification (of information)
; Computer aided analysis
; Computer aided diagnosis
; Cytology
; Deep learning
; Diseases
; Image analysis
; Image segmentation
; Medical imaging
|
EI分类号 | Biomedical Engineering:461.1
; Biological Materials and Tissue Engineering:461.2
; Ergonomics and Human Factors Engineering:461.4
; Biology:461.9
; Information Theory and Signal Processing:716.1
; Computer Applications:723.5
; Imaging Techniques:746
; Information Sources and Analysis:903.1
|
ESI学科分类 | COMPUTER SCIENCE
|
来源库 | 人工提交
|
出版状态 | 在线出版
|
引用统计 |
被引频次[WOS]:30
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/416047 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, China 2.Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China 3.Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China 4.School of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China 5.Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China |
推荐引用方式 GB/T 7714 |
Hao Jiang,Yanning Zhou,Yi Lin,et al. Deep learning for computational cytology: A survey[J]. MEDICAL IMAGE ANALYSIS,2023,84(84).
|
APA |
Hao Jiang,Yanning Zhou,Yi Lin,Ronald C.K.Chan,Jiang Liu,&Hao Chen.(2023).Deep learning for computational cytology: A survey.MEDICAL IMAGE ANALYSIS,84(84).
|
MLA |
Hao Jiang,et al."Deep learning for computational cytology: A survey".MEDICAL IMAGE ANALYSIS 84.84(2023).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Deep learning for co(2648KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论