中文版 | English
题名

Sound-Based Terrain Classification for Multi-modal Wheel-Leg Robots

作者
DOI
发表日期
2022-07-09
会议名称
IEEE-ARM
ISBN
978-1-6654-8307-0
会议录名称
页码
174-179
会议日期
2022年7月9-11日
会议地点
桂林
摘要
The mobile robot will move continually with the ground in the various unstructured environments, and it will inevitably be affected by the terrain geometry and type (physical property). As a result, terrain detection and classification skills are critical and demand extra attention in order to assure the reliability of robot control and navigation. For terrain analysis of specific tasks, previous work has always used vision-based non-contact sensors or proprioceptive contact-based sensors (e.g., IMU and force sensors), even though vision is not robust against environmental changes and signals acquired by IMU or force sensors are not rich enough. In this paper, we proposed a contact-based terrain classification method with a novel acoustic sensing modality that can provide much richer contact information for robot-terrain interactions and mobile mobility. To this end, we use a multi-functional test-bed with 6 different terrain types for data collection. We then use 4 machine learning algorithms to assess and handle numerous sensory signals (audio and force). The experiment results show that the acoustic signal can reach a great classification accuracy of more than 98%, which is much higher than the force signal. The comparison of multiple terrain types and robot locomotion modality indicates the robustness and effectiveness of our proposed sound-based terrain classification method.
关键词
学校署名
第一
相关链接[IEEE记录]
来源库
人工提交
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9959511
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/416049
专题南方科技大学
工学院_机械与能源工程系
作者单位
南方科技大学
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Jia ZZ. Sound-Based Terrain Classification for Multi-modal Wheel-Leg Robots[C],2022:174-179.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Sound-Based_Terrain_(4691KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[贾振中]的文章
百度学术
百度学术中相似的文章
[贾振中]的文章
必应学术
必应学术中相似的文章
[贾振中]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。