中文版 | English
题名

SOTER: Guarding Black-box Inference for General Neural Networks at the Edge

作者
通讯作者Jianyu Jiang
共同第一作者Tianxiang Shen; Ji Qi
发表日期
2022-07-11
会议名称
2022 USENIX Annual Technical Conference
会议日期
July 11–13, 2022
会议地点
Carlsbad, CA, USA
摘要

The prosperity of AI and edge computing has pushed more and more well-trained DNN models to be deployed on third-party edge devices to compose mission-critical applications. This necessitates protecting model confidentiality at untrusted devices, and using a co-located accelerator (e.g., GPU) to speed up model inference locally. Recently, the community has sought to improve the security with CPU trusted execution environments (TEE). However, existing solutions either run an entire model in TEE, suffering from extremely high inference latency, or take a partition-based approach to handcraft partial model via parameter obfuscation techniques to run on an untrusted GPU, achieving lower inference latency at the expense of both the integrity of partitioned computations outside TEE and accuracy of obfuscated parameters.

We propose SOTER, the first system that can achieve model confidentiality, integrity, low inference latency and high accuracy in the partition-based approach. Our key observation is that there is often an \textit{associativity} property among many inference operators in DNN models. Therefore, SOTER automatically transforms a major fraction of associative operators into \textit{parameter-morphed}, thus \textit{confidentiality-preserved} operators to execute on untrusted GPU, and fully restores the execution results to accurate results with associativity in TEE. Based on these steps, SOTER further designs an \textit{oblivious fingerprinting} technique to safely detect integrity breaches of morphed operators outside TEE to ensure correct executions of inferences. Experimental results on six prevalent models in the three most popular categories show that, even with stronger model protection, SOTER achieves comparable performance with partition-based baselines while retaining the same high accuracy as insecure inference.

学校署名
其他
语种
英语
相关链接[来源记录]
来源库
人工提交
全文链接https://www.usenix.org/system/files/atc22-shen.pdf
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/416078
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.The University of Hong Kong
2.Huawei Technologies Co., Ltd
3.The Hong Kong Polytechnic University
4.Southern University of Science and Technology
推荐引用方式
GB/T 7714
Tianxiang Shen,Ji Qi,Jianyu Jiang,et al. SOTER: Guarding Black-box Inference for General Neural Networks at the Edge[C],2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
2022 Soter.pdf(1543KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Tianxiang Shen]的文章
[Ji Qi]的文章
[Jianyu Jiang]的文章
百度学术
百度学术中相似的文章
[Tianxiang Shen]的文章
[Ji Qi]的文章
[Jianyu Jiang]的文章
必应学术
必应学术中相似的文章
[Tianxiang Shen]的文章
[Ji Qi]的文章
[Jianyu Jiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。