题名 | A Hardware-Aware Neural Architecture Search Pareto Front Exploration for In-Memory Computing |
作者 | |
通讯作者 | Ngai Wong |
DOI | |
发表日期 | 2022-10
|
会议名称 | in Proc. 2020 IEEE 16th Int. Conf. Solid-State and Integrated Circuit Technology (ICSICT)
|
ISBN | 978-1-6654-6907-4
|
会议录名称 | |
页码 | 1-4
|
会议日期 | 2022-10-25
|
会议地点 | Nanjing
|
摘要 | Traditional neural networks deployed on CPU/GPU architectures have achieved impressive results on various AI tasks. However, the growing model sizes and intensive computation have presented stringent challenges for deployment on edge devices with restrictive compute and storage resources. This paper proposes a one-shot training-evaluation framework to solve the neural architecture search (NAS) problem for in-memory computing, targeting the emerging resistive random-access memory (RRAM) analog AI platform. We test inference accuracy and hardware performance of subnets sampled in different dimensions of a pretrained supernet. Experiments show that the proposed one-shot hardware-aware NAS (HW-NAS) framework can effectively explore the Pareto front considering both accuracy and hardware performance, and generate more optimal models via morphing a standard backbone model. |
关键词 | |
学校署名 | 其他
|
相关链接 | [IEEE记录] |
来源库 | 人工提交
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9963263 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/416308 |
专题 | 南方科技大学 工学院_深港微电子学院 |
作者单位 | 1.Southern University of Science and Technology 2.The University of Hong Kong |
推荐引用方式 GB/T 7714 |
Ziyi Guan,Wenyong Zhou,Yuan Ren,et al. A Hardware-Aware Neural Architecture Search Pareto Front Exploration for In-Memory Computing[C],2022:1-4.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论