[1] A. Ahadi, Y. Matsushita, T. Sawaguchi, Q. Sun, K. Tsuchiya, Origin of zero and negative thermal expansion in severely-deformed superelastic NiTi alloy, Acta Materialia 124 (2017) 79-92.
[2] M. Li, Q. Sun, Nanoscale phase transition behavior of shape memory alloys — closed form solution of 1D effective modelling, Journal of the Mechanics and Physics of Solids 110 (2018) 21-37.
[3] C. Yu, G. Kang, Q. Kan, A micromechanical constitutive model for grain size dependent thermo-mechanically coupled inelastic deformation of super-elastic NiTi shape memory alloy, International Journal of Plasticity 105 (2018) 99-127.
[4] J. Chen, L. Xing, G. Fang, L. Lei, W. Liu, Improved elastocaloric cooling performance in gradient-structured NiTi alloy processed by localized laser surface annealing, Acta Materialia 208 (2021) 116741.
[5] J. Chen, H. Yin, Q. Sun, Effects of grain size on fatigue crack growth behaviors of nanocrystalline superelastic NiTi shape memory alloys, Acta Materialia 195 (2020) 141- 150.
[6] A. Ahadi, Q. Sun, Grain size dependence of fracture toughness and crack-growth resistance of superelastic NiTi, Scripta Materialia 113 (2016) 171-175.
[7] P. Hua, H. Lin, Q. Sun, Ultrahigh cycle fatigue deformation of polycrystalline NiTi micropillars, Scripta Materialia 203 (2021) 114108.
[8] C. Ye, S. Suslov, X. Fei, G. Cheng, Bimodal nanocrystallization of NiTi shape memory alloy by laser shock peening and post-deformation annealing, Acta Materialia 59(19) (2011) 7219-7227.
[9] K. Lu, J. Lu, Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment, Materials Science and Engineering: A 375-377 (2004) 38- 45.
[10] J. Bloem, Nucleation and growth of silicon by CVD, Journal of Crystal Growth 50(3) (1980) 581-604.
[11] C. Koch, The synthesis and structure of nanocrystalline materials produced by mechanical attrition: A review, Nanostructured Materials 2(2) (1993) 109-129.
[12] K. Lu, Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties, Materials Science and Engineering: R: Reports 16(4) (1996) 161- 221.
[13] R. Valiev, R. Islamgaliev, I. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science 45(2) (2000) 103-189.
[14] W. Li, N. Tao, K. Lu, Fabrication of a gradient nano-micro-structured surface layer on bulk copper by means of a surface mechanical grinding treatment, Scripta Materialia 59(5) (2008) 546-549.
[15] H. Huang, Z. Wang, J. Lu, K. Lu, Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer, Acta Materialia 87 (2015) 150-160.
[16] Q. Wang, Y. Yin, Q. Sun, L. Xiao, J. Sun, Gradient nano microstructure and its formation mechanism in pure titanium produced by surface rolling treatment, Journal of Materials Research 29(4) (2014) 569-577.
[17] C. Montross, T. Wei, L. Ye, G. Clark, Y. Mai, Laser shock processing and its effects on microstructure and properties of metal alloys: a review, International Journal of Fatigue 24(10) (2002) 1021-1036.
[18] T. Hu, Y. Xin, S. Wu, C. Chu, J. Lu, L. Guan, H. Chen, T. Hung, K. Yeung, P. Chu, Corrosion behavior on orthopedic NiTi alloy with nanocrystalline/amorphous surface, Materials Chemistry and Physics 126(1-2) (2011) 102-107.
[19] T. Hu, C. Chu, S. Wu, R. Xu, G. Sun, T. Hung, K. Yeung, Z. Wu, G. Li, P. Chu, Microstructural evolution in NiTi alloy subjected to surface mechanical attrition treatment and mechanism, Intermetallics 19(8) (2011) 1136-1145.
[20] T. Hu, L. Chen, S. Wu, C. Chu, L. Wang, K. Yeung, P. Chu, Graded phase structure in the surface layer of NiTi alloy processed by surface severe plastic deformation, Scripta Materialia 64(11) (2011) 1011-1014.
[21] Q. Sun, Y. He, A multiscale continuum model of the grain-size dependence of the stress hysteresis in shape memory alloy polycrystals, International Journal of Solids and Structures 45(13) (2008) 3868-3896.
[22] D. Li, H. Chen, H. Xu, The effect of nanostructured surface layer on the fatigue behaviors of a carbon steel, Applied Surface Science 255(6) (2009) 3811-3816.
[23] Z. Sun, M. Chemkhi, P. Kanoute, D. Retraint, Fatigue properties of a biomedical 316L steel processed by surface mechanical attrition, IOP Conference Series: Materials Science and Engineering 63(1) (2014) 012021.
[24] J. Zhou, D. Retraint, Z. Sun, P. Kanouté, Comparative study of the effects of surface mechanical attrition treatment and conventional shot peening on low cycle fatigue of a 316L stainless steel, Surface and Coatings Technology 349 (2018) 556-566.
[25] S. Kumar, K. Chattopadhyay, V. Singh, D. Satyanarayana, V. Kumar, Low cycle fatigue life of the alloy IN718 enhanced through surface nanostructuring, Materials Characterization 159 (2020) 110066.
[26] J. Zhou, Z. Sun, P. Kanouté, D. Retraint, Effect of surface mechanical attrition treatment on low cycle fatigue properties of an austenitic stainless steel, International Journal of Fatigue 103 (2017) 309-317.
[27] G. Chen, J. Gao, Y. Cui, H. Gao, X. Guo, S. Wu, Effects of strain rate on the low cycle fatigue behavior of AZ31B magnesium alloy processed by SMAT, Journal of Alloys and Compounds 735 (2018) 536-546.
[28] T. Gao, Z. Sun, H. Xue, D. Retraint, Effect of surface mechanical attrition treatment on high cycle and very high cycle fatigue of a 7075-T6 aluminium alloy, International Journal of Fatigue 139 (2020) 105798.
[29] E. Hall, The Deformation and Ageing of Mild Steel: III Discussion of Results, Proceedings of the Physical Society. Section B 64(9) (1951) 747-753.
[30] N. Petch, The Cleavage Strength of Polycrystals, Journal of the Iron and Steel Institute 174 (1953) 25-28.
[31] G. Taylor, The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical,Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences145 (1934) 362-387.
[32] G. Taylor, Plastic strain in metals, Journal of the Institute of Metals 62 (1938) 307–324.
[33] A. Akhtar, E. Teghtsoonian, Solid solution strengthening of magnesium single crystals—I alloying behaviour in basal slip, Acta Metallurgica 17(11) (1969) 1339-1349.
[34] C. Yu, G. Kang, Q. Kan, D. Song, A micromechanical constitutive model based on crystal plasticity for thermo-mechanical cyclic deformation of NiTi shape memory alloys,International Journal of Plasticity 44 (2013) 161-191.
[35] S. Miyazaki, K. Otsuka, C. Wayman, The shape memory mechanism associated with the martensitic transformation in TiNi alloys—I. Self-accommodation, Acta Metallurgica 37(7) (1989) 1873-1884.
[36] P. Vyskocil, J. Pedersen, G. Kostorz, B. Schönfeld, Small-angle neutron scattering of precipitates in Ni-rich NiTi alloys—I. Metastable states in poly-and single crystals, Acta Materialia 45(8) (1997) 3311-3318.
[37] A. Ahadi, Q. Sun, Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi, Acta Materialia 76 (2014) 186-197.
[38] A. Ahadi, Q. Sun, Stress hysteresis and temperature dependence of phase transition stress in nanostructured NiTi—Effects of grain size, Applied Physics Letters 103(2) (2013).
[39] S. Dilibal, H. Adanir, Comparison and characterization of NiTi and NiTiCu shape memory alloys, Sixth IAASS Conference (2013).
[40] D. Hodgson, W. Ming, R.J. Biermann, Shape memory alloys, ASM International, Metals Handbook, Tenth Edition. 2 (1990) 897-902.
[41] J. Seo, Y. Kim, J. Hu, Pilot study for investigating the cyclic behavior of slit dampersystems with recentering shape memory alloy (SMA) bending bars used for seismicrestrainers, Applied Sciences 5(3) (2015) 187-208.
[42] B. Reedlunn, C. Churchill, E. Nelson, J. Shaw, S. Daly, Tension, compression, andbending of superelastic shape memory alloy tubes, Journal of the Mechanics and Physics of Solids 63 (2014) 506-537.
[43] M. Rahim, J. Frenzel, M. Frotscher, J. Pfetzing-Micklich, R. Steegmüller, M.Wohlschlögel, H. Mughrabi, G. Eggeler, Impurity levels and fatigue lives of pseudoelasticNiTi shape memory alloys, Acta Materialia 61(10) (2013) 3667-3686.
[44] J. Chen, K. Zhang, Q. Kan, H. Yin, Q. Sun, Ultra-high fatigue life of NiTi cylinders for compression-based elastocaloric cooling, Applied Physics Letters 115(9) (2019) 093902.
[45] K. Zhang, G. Kang, Q. Sun, High fatigue life and cooling efficiency of NiTi shape memory alloy under cyclic compression, Scripta Materialia 159 (2019) 62-67.
[46] H. Lin, P. Hua, Q. Sun, Effects of grain size and partial amorphization on elastocaloric cooling performance of nanostructured NiTi, Scripta Materialia 209 (2022) 114371.
[47] K. Chu, Q. Sun, Reducing functional fatigue, transition stress and hysteresis of NiTi micropillars by one-step overstressed plastic deformation, Scripta Materialia 201 (2021) 113958.
[48] P. Hua, K. Chu, F. Ren, Q. Sun, Cyclic phase transformation behavior of nanocrystalline NiTi at microscale, Acta Materialia 185 (2020) 507-517.
[49] D. Liang, Q. Wang, K. Chu, J. Chen, P. Hua, F. Ren, Q. Sun, Ultrahigh cycle fatigue of nanocrystalline NiTi tubes for elastocaloric cooling, Applied Materials Today 26 (2022) 101377.
[50] B. Wang, G. Kang, W. Wu, K. Zhou, Q. Kan, C. Yu, Molecular dynamics simulations on nanocrystalline super-elastic NiTi shape memory alloy by addressing transformation ratchetting and its atomic mechanism, International Journal of Plasticity 125 (2020) 374- 394.
[51] C. Yu, G. Kang, Q. Kan, Crystal plasticity based constitutive model of NiTi shape memory alloy considering different mechanisms of inelastic deformation, International Journal of Plasticity 54 (2014) 132-162.
[52] B. Xu, C. Yu, G. Kang, Phase field study on the microscopic mechanism of grain size dependent cyclic degradation of super-elasticity and shape memory effect in nano- polycrystalline NiTi alloys, International Journal of Plasticity 145 (2021) 103075.
[53] A. Figueiredo, P. Modenesi, V. Buono, Low-cycle fatigue life of superelastic NiTi wires, International Journal of Fatigue 31(4) (2009) 751-758.
[54] H. Yin, Y. He, Z. Moumni, Q. Sun, Effects of grain size on tensile fatigue life of nanostructured NiTi shape memory alloy, International Journal of Fatigue 88 (2016) 166- 177.
[55] L. Zheng, Y. He, Z. Moumni, Investigation on fatigue behaviors of NiTi polycrystalline strips under stress-controlled tension via in-situ macro-band observation, International Journal of Plasticity 90 (2017) 116-145.
[56] G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, M. Wagner, Structural and functional fatigue of NiTi shape memory alloys, Materials Science and Engineering: A 378(1-2) (2004) 24-33.
[57] J. Chen, Q. Kan, Q. Li, H. Yin, Effects of grain size on acoustic emission of nanocrystalline superelastic NiTi shape memory alloys during fatigue crack growth, Materials Letters 252 (2019) 300-303.
[58] H. Yin, Y. He, Q. Sun, Effect of deformation frequency on temperature and stress oscillations in cyclic phase transition of NiTi shape memory alloy, Journal of the Mechanics and Physics of Solids 67 (2014) 100-128.
[59] Y. Zhang, Z. Moumni, J. Zhu, W. Zhang, Effect of the amplitude of the training stress on the fatigue lifetime of NiTi shape memory alloys, Scripta Materialia 149 (2018) 66-69.
[60] J. Koike, D. Parkin, M. Nastasi, Crystal-to-amorphous transformation of NiTi induced by cold rolling, Journal of Materials Research 5(7) (1990) 1414-1418.
[61] P. Hua, M. Xia, Y. Onuki, Q. Sun, Nanocomposite NiTi shape memory alloy with high strength and fatigue resistance, Nature Nanotechnology 16 (2021) 409-413.
[62] M. Xia, P. Liu, Q. Sun, Grain size dependence of Young’s modulus and hardness for nanocrystalline NiTi shape memory alloy, Materials Letters 211 (2018) 352-355.
[63] T. Fang, W.L. Li, N.R. Tao, K. Lu, Revealing Extraordinary Intrinsic Tensile Plasticity in Gradient Nano-Grained Copper, Science 331(6024) (2011) 1587-1590.
[64] R. Delville, B. Malard, J. Pilch, P. Sittner, D. Schryvers, Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni–Ti wires, International Journal of Plasticity 27(2) (2011) 282-297.
[65] J. Ding, Q. Li, J. Li, S. Xue, Z. Fan, H. Wang, X. Zhang, Mechanical behavior of structurally gradient nickel alloy, Acta Materialia 149 (2018) 57-67.
[66] L. Yang, N. Tao, K. Lu, L. Lu, Enhanced fatigue resistance of Cu with a gradient nanograined surface layer, Scripta Materialia 68(10) (2013) 801-804.
[67] T. Roland, D. Retraint, K. Lu, J. Lu, Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment, Scripta Materialia 54(11) (2006) 1949-1954.
[68] N. Tao, Z. Wang, W. Tong, M. Sui, J. Lu, K. Lu, An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment, Acta materialia 50(18) (2002) 4603-4616.
[69] H. Zhang, Z. Hei, G. Liu, J. Lu, K. Lu, Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment, Acta materialia 51(7) (2003) 1871-1881.
[70] Q. Mei, L. Zhang, K. Tsuchiya, H. Gao, T. Ohmura, K. Tsuzaki, Grain size dependence of the elastic modulus in nanostructured NiTi, Scripta Materialia 63(10) (2010) 977-980.
[71] K. Yan, P. Wei, F. Ren, W. He, Q. Sun, Enhance Fatigue Resistance of Nanocrystalline NiTi by Laser Shock Peening, Shape Memory and Superelasticity 5(4) (2019) 436-443.
[72] T. Hu, C. Wen, J. Lu, S. Wu, Y. Xin, W. Zhang, C. Chu, J. Chung, K. Yeung, D. Kwok, P. Chu, Surface mechanical attrition treatment induced phase transformation behavior in NiTi shape memory alloy, Journal of Alloys and Compounds 482(1-2) (2009) 298-301.
[73] D. Grant, S. Green, J. Wood, The surface performance of shot peened and ion implanted NiTi shape memory alloy, Aeta metallurgica et Materialia 43(3) (1995) 1045-1051.
[74] S. Robertson, A. Pelton, R. Ritchie, Mechanical fatigue and fracture of Nitinol, International Materials Reviews 57(1) (2012) 1-37.
[75] K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys, Progress in Materials Science 50(5) (2005) 511-678.
[76] A. Korsunsky, M. Sebastiani, E. Bemporad, Focused ion beam ring drilling for residual stress evaluation, Materials Letters 63(22) (2009) 1961-1963.
[77] J. Everaerts, X. Song, B. Nagarajan, A. Korsunsky, Evaluation of macro-and microscopic residual stresses in laser shock-peened titanium alloy by FIB-DIC ring-core milling with different core diameters, Surface and Coatings Technology 349 (2018) 719-724.
[78] M. Young, S. Gollerthan, A. Baruj, J. Frenzel, W. Schmahl, G. Eggeler, Strain mapping of crack extension in pseudoelastic NiTi shape memory alloys during static loading, Acta Materialia 61(15) (2013) 5800-5806.
[79] K. Chu, K. Yan, F. Ren, Q. Sun, A dual-pillar method for measurement of stress-strain response of material at microscale, Scripta Materialia 172 (2019) 138-143.
[80] P. Bayati, A. Jahadakbar, M. Barati, M. Nematollahi, L. Saint-Sulpice, M. Haghshenas, S.A. Chirani, M.J. Mahtabi, M. Elahinia, Toward low and high cycle fatigue behavior of SLM-fabricated NiTi: Considering the effect of build orientation and employing a self- heating approach, International Journal of Mechanical Sciences 185 (2020) 105878.
[81] H. Huang, Y. Zhu, W. Chang, Comparison of Bending Fatigue of NiTi and CuAlMn Shape Memory Alloy Bars, Advances in Materials Science and Engineering 2020 (2020) 1-9.
[82] H. Yamamoto, M. Taya, Y. Liang, O. Namli, M. Saito, Fatigue properties of NiTi shape- memory alloy thin plates, Behavior and Mechanics of Multifunctional Materials and Composites (2013) 189-197.
[83] M. Araújo, P. Sales da Silva, C. José de Araújo, Mechanical behavior and fatigue life of micro welded joints obtained by TIG spots in NiTi wires, Smart Materials and Structures 28(12) 28 (2019) 12.
[84] Y. Wu, E. Ertekin, H. Sehitoglu, Elastocaloric cooling capacity of shape memory alloys – Role of deformation temperatures, mechanical cycling, stress hysteresis and inhomogeneity of transformation, Acta Materialia 135 (2017) 158-176.
[85] A. Ahadi, T. Kawasaki, S. Harjo, W. Ko, Q. Sun, K. Tsuchiya, Reversible elastocaloric effect at ultra-low temperatures in nanocrystalline shape memory alloys, Acta Materialia 165 (2019) 109-117.
[86] T. Ezaz, H. Sehitoglu, H. Maier, Energetics of twinning in martensitic NiTi, Acta Materialia 59(15) (2011) 5893-5904.
[87] A. Ahadi, Q. Sun, Stress-induced nanoscale phase transition in superelastic NiTi by in situ X-ray diffraction, Acta Materialia 90 (2015) 272-281.
[88] K. Tsuchiya, Y. Hada, T. Koyano, K. Nakajima, M. Ohnuma, T. Koike, Y. Todaka, M. Umemoto, Production of TiNi amorphous/nanocrystalline wires with high strength and elastic modulus by severe cold drawing, Scripta Materialia 60(9) (2009) 749-752.
[89] M. Munther, T. Martin, A. Tajyar, L. Hackel, A. Beheshti, K. Davami, Laser shock peening and its effects on microstructure and properties of additively manufactured metal alloys: a review, Engineering Research Express 2(2) (2020) 022001.
[90] P. Peyre, R. Fabbro, P. Merrien, H. Lieurade, Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour, Materials Science and Engineering: A 210(1- 2) (1996) 102-113.
[91] H. Hou, E. Simsek, T. Ma, N. Johnson, S. Qian, C. Cissé, D. Stasak, N. Hasan, L. Zhou, Y. Hwang, R. Radermacher, V. Levitas, M. Kramer, M. Zaeem, A. Stebner, R. Cui, I. Takeuchi, Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing, Science (366) (2019) 1116-1121.
[92] L. Heller, H. Seiner, P. Šittner, P. Sedlák, O. Tyc, L. Kadeřávek, On the plastic deformation accompanying cyclic martensitic transformation in thermomechanically loaded NiTi, International Journal of Plasticity 111 (2018) 53-71.
[93] Y. Chen, O. Molnárová, O. Tyc, L. Kadeřávek, L. Heller, P. Šittner, Recoverability of large strains and deformation twinning in martensite during tensile deformation of NiTi shape memory alloy polycrystals, Acta Materialia 180 (2019) 243-259.
[94] S. Praveen, J.W. Bae, P. Asghari-Rad, J. Park, H. Kim, Ultra-high tensile strength nanocrystalline CoCrNi equi-atomic medium entropy alloy processed by high-pressure torsion, Materials Science and Engineering: A 735 (2018) 394-397.
[95] P. Sathiyamoorthi, J. Moon, J. Bae, P. Asghari-Rad, H. Kim, Superior cryogenic tensile properties of ultrafine-grained CoCrNi medium-entropy alloy produced by high-pressure torsion and annealing, Scripta Materialia 163 (2019) 152-156.
[96] J. Cieslak, J. Tobola, K. Berent, M. Marciszko, Phase composition of AlxFeNiCrCo high entropy alloys prepared by sintering and arc-melting methods, Journal of Alloys and Compounds 740 (2018) 264-272.
[97] K. Lu, A. Chauhan, M. Walter, A. Tirunilai, M. Schneider, G. Laplanche, J. Freudenberger, A. Kauffmann, M. Heilmaier, J. Aktaa, Superior low-cycle fatigue properties of CoCrNi compared to CoCrFeMnNi, Scripta Materialia 194 (2021) 113667.
[98] E. George, D. Raabe, R. Ritchie, High-entropy alloys, Nature Reviews Materials (2019).
[99] S. Bajpai, B. MacDonald, T. Rupert, H. Hahn, E. Lavernia, D. Apelian, Recent progress in the CoCrNi alloy system, Materialia 24 (2022) 101476.
[100] B. Gludovatz, A. Hohenwarter, D. Catoor, E. Chang, E. George, R. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science 345(6201) (2014) 1153- 1158.
[101] B. Gludovatz, A. Hohenwarter, K. Thurston, H. Bei, Z. Wu, E. George, R. Ritchie, Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures, Nature Communication 7 (2016) 10602.
[102] G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E. George, Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi, Acta Materialia 128 (2017) 292-303.
[103] J. Miao, C. Slone, T. Smith, C. Niu, H. Bei, M. Ghazisaeidi, G. Pharr, M. Mills, The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy, Acta Materialia 132 (2017) 35-48.
[104] J. Miao, C. Slone, T. Smith, C. Niu, H. Bei, M. Ghazisaeidi, G. Pharr, M. Mills, The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy, Acta Materialia 132 (2017) 35-48.
[105] C. Slone, J. Miao, E. George, M. Mills, Achieving ultra-high strength and ductility in equiatomic CrCoNi with partially recrystallized microstructures, Acta Materialia 165 (2019) 496-507.
[106] S. Praveen, J. Bae, P. Asghari-Rad, J. Park, H. Kim, Annealing-induced hardening in high-pressure torsion processed CoCrNi medium entropy alloy, Materials Science and Engineering: A 734 (2018) 338-340.
[107] B. Schuh, B. Volker, J. Todt, K. Kormout, N. Schell, A. Hohenwarter, Influence of Annealing on Microstructure and Mechanical Properties of a Nanocrystalline CrCoNi Medium-Entropy Alloy, Materials (Basel) 11(5) (2018).
[108] Y. Zhao, T. Yang, Y. Tong, J. Wang, J. Luan, Z. Jiao, D. Chen, Y. Yang, A. Hu, C. Liu, J. Kai, Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy, Acta Materialia 138 (2017) 72-82.
[109] Y. Zhu, X. Liao, X. Wu, J. Narayan, Grain size effect on deformation twinning and detwinning, Journal of Materials Science 48(13) (2013) 4467-4475.
[110] Y. Zhu, X. Liao, Retaining ductility, Nature Materials 3(6) (2004) 351-352.
[111] M. Yang, D. Yan, F. Yuan, P. Jiang, E. Ma, X. Wu, Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength, Proceedings of the National Academy of Sciences 115(28) (2018) 7224-7229.
[112] X. Du, W. Li, H. Chang, T. Yang, G. Duan, B. Wu, J. Huang, F. Chen, C. Liu, W.Chuang, Y. Lu, M.L. Sui, E.W. Huang, Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy, Nature Communnication 11(1) (2020) 2390.
[113] Y. Ma, M. Yang, F. Yuan, X. Wu, Deformation induced hcp nano-lamella and its size effect on the strengthening in a CoCrNi medium-entropy alloy, Journal of Materials Science & Technology 82 (2021) 122-134.
[114] X. Zheng, W. Xie, L. Zeng, H. Wei, X. Zhang, H. Wang, Achieving high strength and ductility in a heterogeneous-grain-structured CrCoNi alloy processed by cryorolling and subsequent short-annealing, Materials Science and Engineering: A 821 (2021) 141610.
[115] M. Hasan, Y. Liu, X. An, J. Gu, M. Song, Y. Cao, Y. Li, Y. Zhu, X. Liao, Simultaneously enhancing strength and ductility of a high-entropy alloy via gradient hierarchical microstructures, International Journal of Plasticity 123 (2019) 178-195.
[116] K. Lu, Making strong nanomaterials ductile with gradients, Science 345(6203) (2014) 1455-1456.
[117] X. Wu, P. Jiang, L. Chen, F. Yuan, Y. Zhu, Extraordinary strain hardening by gradient structure, Proceedings of the National Academy of Sciences 111(20) (2014) 7197-7201.
[118] J. Wang, H. Yang, J. Ruan, Y. Wang, S. Ji, Microstructure and properties of CoCrNi medium-entropy alloy produced by gas atomization and spark plasma sintering, Journal of Materials Research 34(12) (2019) 2126-2136.
[119] L. Chai, K. Xiang, J. Xia, V. Fallah, K. Murty, Z. Yao, B. Gan, Effects of pulsed laser surface treatments on microstructural characteristics and hardness of CrCoNi medium- entropy alloy, Philosophical Magazine 99(24) (2019) 3015-3031.
[120] S. Yuan, B. Gan, L. Qian, B. Wu, H. Fu, H. Wu, C. Cheung, X. Yang, Gradient nanotwinned CrCoNi medium-entropy alloy with strength-ductility synergy, Scripta Materialia 203 (2021).
[121] P. Zhao, B. Guan, Y. Tong, R. Wang, X. Li, X. Zhang, S. Tu, A quasi-in-situ EBSD study of the thermal stability and grain growth mechanisms of CoCrNi medium entropy alloy with gradient-nanograined structure, Journal of Materials Science & Technology 109 (2022) 54-63 114117.
[122] R. Wen, C. You, L. Zeng, H. Wang, X. Zhang, Achieving a unique combination of strength and ductility in CrCoNi medium-entropy alloy via heterogeneous gradient structure, Journal of Materials Science 55(26) (2020) 12544-12553.
[123] W. Lu, X. Luo, D. Ning, M. Wang, C. Yang, M. Li, Y. Yang, P. Li, B. Huang, Excellent strength-ductility synergy properties of gradient nano-grained structural CrCoNi medium- entropy alloy, Journal of Materials Science & Technology 112 (2022) 195-201.
[124] B. Gan, J. Gu, M.A. Monclús, X. Dong, Y. Zhao, H. Yu, J. Du, M. Song, Z.N. Bi, Strengthening Mechanisms of Ni–Co–Cr Alloys via Nanotwins and Nanophases, Superalloys (2020) 619-628.
[125] M. Tsai, J. Huang, W. Tsai, T. Chou, C. Chen, T. Li, J. Jang, Effects of ultrasonic surface mechanical attrition treatment on microstructures and mechanical properties of high entropy alloys, Intermetallics 93 (2018) 113-121.
[126] M. Novelli, R. Chulist, W. Skrotzki, E.P. George, T. Grosdidier, Surface hardening of high- and medium-entropy alloys by mechanical attrition at room and cryogenic temperatures, Applied Physics Letters 119(20) (2021).
[127] W. Dyrkacz, Vacuum melting in the steel industry today, The Journal of The Minerals, Metals & Materials Society 9(12) (1957) 1513-1516.
[128] W. Jones, VACUUM INDUCTION MELTING, PROCESS CONSIDERATIONS, Metal Progress 72 (1957) 4.
[129] N. Griesenauer, S. Lyon, C. Alexander, Vacuum induction melting of titanium, Journal of Vacuum Science and Technology 9(6) (1972) 1351-1355.
[130] J.S. Benjamin, Dispersion strengthened superalloys by mechanical alloyinga, Metallurgical transactions 1(10) (1970) 2943-2951.
[131] Y. Liu, Y. He, S. Cai, Effect of gradient microstructure on the strength and ductility of medium-entropy alloy processed by severe torsion deformation, Materials Science and Engineering: A 801 (2021) 140429.
[132] S. Yoshida, T. Bhattacharjee, Y. Bai, N. Tsuji, Friction stress and Hall-Petch relationship in CoCrNi equi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing, Scripta Materialia 134 (2017) 33-36.
[133] I. Moravcik, J. Cizek, Z. Kovacova, J. Nejezchlebova, M. Kitzmantel, E. Neubauer, I. Kubena, V. Hornik, I. Dlouhy, Mechanical and microstructural characterization of powder metallurgy CoCrNi medium entropy alloy, Materials Science and Engineering: A 701 (2017) 370-380.
[134] I. Moravcik, H. Hadraba, L. Li, I. Dlouhy, D. Raabe, Z. Li, Yield strength increase of a CoCrNi medium entropy alloy by interstitial nitrogen doping at maintained ductility, Scripta Materialia 178 (2020) 391-397.
[135] Z. Wu, W. Guo, K. Jin, J. Poplawsky, Y. Gao, H. Bei, Enhanced strength and ductility of a tungsten-doped CoCrNi medium-entropy alloy, Journal of Materials Research 33(19) (2018) 3301-3309.
[136] J. Liu, J. Chen, T. Liu, C. Li, Y. Chen, L. Dai, Superior strength-ductility CoCrNi medium-entropy alloy wire, Scripta Materialia 181 (2020) 19-24.
[137] H. Deng, Z. Xie, B. Zhao, Y. Wang, M. Wang, J. Yang, T. Zhang, Y. Xiong, X. Wang, Q. Fang, C. Liu, Tailoring mechanical properties of a CoCrNi medium-entropy alloy by controlling nanotwin-HCP lamellae and annealing twins, Materials Science and Engineering: A 744 (2019) 241-246.
[138] D. Lee, M. Agustianingrum, N. Park, N. Tsuji, Synergistic effect by Al addition in improving mechanical performance of CoCrNi medium-entropy alloy, Journal of Alloys and Compounds 800 (2019) 372-378.
[139] R. Chang, W. Fang, X. Bai, C. Xia, X. Zhang, H. Yu, B. Liu, F. Yin, Effects of tungsten additions on the microstructure and mechanical properties of CoCrNi medium entropy alloys, Journal of Alloys and Compounds 790 (2019) 732-743.
[140] H. Chang, T. Zhang, S. Ma, D. Zhao, R. Xiong, T. Wang, Z. Li, Z. Wang, Novel Si- added CrCoNi medium entropy alloys achieving the breakthrough of strength-ductility trade-off, Materials & Design 197 (2021) 109202.
[141] F. Weng, Y. Chew, Z. Zhu, X. Yao, L. Wang, F.L. Ng, S. Liu, G. Bi, Excellent combination of strength and ductility of CoCrNi medium entropy alloy fabricated by laser aided additive manufacturing, Additive Manufacturing 34 (2020) 101202.
[142] X. Liu, M. Zhang, Y. Ma, W. Dong, R. Li, Y. Lu, Y. Zhang, P. Yu, Y. Gao, G. Li, Achieving ultrahigh strength in CoCrNi-based medium-entropy alloys with synergistic strengthening effect, Materials Science and Engineering: A 776 (2020) 139028.
[143] N. An, Y. Sun, Y. Wu, J. Tian, Z. Li, Q. Li, J. Chen, X. Hui, High temperature strengthening via nanoscale precipitation in wrought CoCrNi-based medium-entropy alloys, Materials Science and Engineering: A 798 (2020) 140213.
[144] R. Chang, W. Fang, J. Yan, H. Yu, X. Bai, J. Li, S. Wang, S. Zheng, F. Yin, Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations, Journal of Materials Science & Technology 62 (2021) 25-33.
[145] A. Tirunilai, T. Hanemann, C. Reinhart, V. Tschan, K. Weiss, G. Laplanche, J. Freudenberger, M. Heilmaier, A. Kauffmann, Comparison of cryogenic deformation of the concentrated solid solutions CoCrFeMnNi, CoCrNi and CoNi, Materials Science and Engineering: A 783 (2020).
[146] C. Soundararajan, H. Luo, D. Raabe, Z. Li, Hydrogen resistance of a 1 GPa strong equiatomic CoCrNi medium entropy alloy, Corrosion Science 167 (2020) 139290.
[147] J. Wang, H. Yang, H. Huang, J. Ruan, S. Ji, In-situ Mo nanoparticles strengthened CoCrNi medium entropy alloy, Journal of Alloys and Compounds 798 (2019) 576-586.
[148] H. Huang, J. Wang, H. Yang, S. Ji, H. Yu, Z. Liu, Strengthening CoCrNi medium- entropy alloy by tuning lattice defects, Scripta Materialia 188 (2020) 216-221.
[149] Y. Shi, Y. Wang, S. Li, R. Li, Y. Wang, Mechanical behavior in boron-microalloyed CoCrNi medium-entropy alloy studied by in situ high-energy X-ray diffraction, Materials Science and Engineering: A 788 (2020) 139600.
[150] W. Jian, Z. Xie, S. Xu, Y. Su, X. Yao, I. Beyerlein, Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi, Acta Materialia 199 (2020) 352-369.
[151] Y. Fu, W. Xiao, D. Kent, M.S. Dargusch, J. Wang, X. Zhao, C. Ma, Ultrahigh strain hardening in a transformation-induced plasticity and twinning-induced plasticity titanium alloy, Scripta Materialia 187 (2020) 285-290.
[152] R. Smallman, K. Westmacott, Stacking faults in face-centred cubic metals and alloys, Philosophical Magazine 2(17) (1957) 669-683.
[153] S. Yoshida, T. Ikeuchi, T. Bhattacharjee, Y. Bai, A. Shibata, N. Tsuji, Effect of elemental combination on friction stress and Hall-Petch relationship in face-centered cubic high / medium entropy alloys, Acta Materialia 171 (2019) 201-215.
修改评论