中文版 | English
题名

Ti多孔结构选区激光熔化成型及性能研究

其他题名
STUDIES ON SELECTIVE LASER MELTING FORMING AND PROPERTIES OF TI POROUS STRUCTURES
姓名
姓名拼音
LIU Yonglun
学号
12032571
学位类型
硕士
学位专业
085601 材料工程
学科门类/专业学位类别
0856 材料与化工
导师
严明
导师单位
材料科学与工程系
外机构导师
孟伟
外机构导师单位
深圳市燃气集团股份有限公司
论文答辩日期
2022-11-01
论文提交日期
2022-12-13
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

        3D打印技术也被称为增材制造,是根据三维模型数据,通过自动控制逐层增添材料,最终制得所需零件的制造方法,这使得3D打印受复杂几何形状的限制很少。因此,3D打印技术在骨科植入物领域的应用得到了快速发展,3D打印技术可以制备具有复杂多孔结构及内部结构的骨科植入物。然而,相同生物相容材料前提下,3D打印骨科植入物中不同类型多孔结构、同种多孔结构在不同几何结构参数的情况下,其对生物成骨细胞的生长影响规律尚未得到系统性的研究,在现有的技术流程中,仅依赖医生及设计人员的经验进行选择,这一定程度上降低了植入物的可靠性及科学性。本研究选取了十二面体晶格结构、金刚石晶格结构、螺旋十二面体、费舍诺克曲面、泰森多边形等五种多孔结构,通过计算机辅助设计技术进行了三维建模,并通过选区激光熔化技术,在N2和Ar混合气氛围下制备了具有不同结构参数的20个氮气氛强化纯钛多孔结构样品。

        本论文对不同多孔结构样品进行了压缩试验,分析了孔隙率及单胞尺寸对弹性模量的影响规律,同时对屈服强度、极限强度、能量吸收能力等关键力学性能进行了测定,并与人体骨质相应参数对比,以表征其力学性能差异;对样品进行了成骨细胞培养实验,并进行了矿化,利用酶标仪对Ca含量进行半定量分析,对比了成骨细胞在不同多孔结构样品内的生长情况;通过活死细胞染色,研究了细胞在多孔结构中生长的情况及表面附着情况,以研究细胞在不同多孔结构中的生长状况差异;最后对样品进行了细胞增殖、毒性试验及溶血性试验,以更全面验证其生物性能。

        实验表明,通过合适的选区激光熔化工艺参数可以顺利成型介观尺度的多孔结构,且最优能量密度约为实体结构的0.4倍,通过调节不同能量密度,还可形成不同的微表面粗糙结构;氮气氛强化纯Ti多孔结构的性能可以通过其与孔隙率及单胞尺寸等参数的关系进行较好预测;Ti多孔结构的生物相容性及促进细胞融合生长性能优良,其中 螺旋十二面体型多孔结构样品综合性能最优;各种多孔结构弹性模量均在0.2~20 GPa范围内,符合人体骨质的模量范围,因此能很好减缓应力屏蔽效应,适合植入物应用。

其他摘要

3D printing technology, also known as additive manufacturing, is a manufacturing method of adding materials layer by layer through automatic control based on 3D model data to finally produce the required parts, which makes 3D printing less limited by complex geometries. Therefore, the application of 3D printing technology in the field of orthopedic implants has been rapidly developed. 3D printing technology can prepare orthopedic implants with complex porous structures and internal structures. However, under the premise of the same biocompatible materials, different types of porous structures in 3D printed orthopedic implants, the same porous structure in the case of different geometric structure parameters, its influence on the growth of biological osteoblasts has not been systematically studied. The existing technical process, only relies on the experience of doctors and designers for selection, which reduces the reliability and scientificity of implants to a certain extent. In this study, five porous structures such as Dodecahedron, Diamond, Gyroid, Fischer Koch S and Voronoi were selected, 3D modeling by computer-aided design technology and 20 samples with different structural parameters were prepared by selective laser melting under N2 and Ar mixture atmosphere.

In this study, compression tests were carried out on samples with different porous structures, and the influence of porosity and unit cell length on the elastic modulus was analyzed. At the same time, key mechanical properties such as yield strength, ultimate strength, and energy absorption capacity were measured. The corresponding parameters of the bone were compared to characterize the difference in mechanical properties; the samples were subjected to osteoblast culture experiments and mineralization, and the Ca content was semi-quantitatively analyzed by a microplate reader, and the osteoblasts in different porous structures were compared. Growth in the sample through live and dead cell staining, the growth of cells in the porous structure and the ability to attach to the surface were studied to study the difference in the growth of cells in different porous structures. Finally, the samples were tested for cell proliferation and toxicity and hemolytic test to more comprehensively verify its biological properties.

The research shows that the mesoscopic-scale porous structure can be successfully formed by suitable selective laser melting process parameters, and the optimal energy density is about 0.4 times that of the solid structure. Different micro-surface rough structures can also be formed by adjusting different energy densities. The performance of pure Ti porous structure strengthened by nitrogen atmosphere can be well predicted by its relationship with parameters such as porosity and unit cell size. Among them, the Gyroid porous structure sample has the best comprehensive performance. The elastic modulus of various porous structures is in the range of 0.2~20 GPa, which is in line with the modulus range of human bone, so it can well reduce the stress shielding effect and is suitable for implant applications.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-12
参考文献列表

[1] Suresh G , Reddy M H , Narendra G , et al. Summarization of 3D Printing Technology in Processing & Dovelopment of Medical Implants[J]. J.Mech.Cont.& Math. Sci,2019,14(1):176-191.
[2] Cho H R, Roh T S, Shim K W, et al. Skull Reconstruction with Custom Made Three-Dimensional Titanium Implant[J]. Arch Craniofac Surg,2015,16(1):11-16.
[3] Badhe R V, Akinfosile O, Bijukumar D, et al. Systemic toxicity eliciting metal ion levels from metallic implants and orthopedic devices - A mini review[J]. Toxicol Lett,2021,10(350):213-224.
[4] Zel T, Altay A, Kaftanolu B, et al. Focus variation measurement and prediction of surface texture parameters using machine learning in laser powder bed fusion[J]. Journal of Manufacturing Science and Engineering, 2019,142(1):1-26.
[5] Lei Z, Bo S, Seung-Kyum B, et al. A topology strategy to reduce stress shielding of additively manufactured porous metallic biomaterials - ScienceDirect[J]. International Journal of Mechanical Sciences, 2021, 197(1):1-15.
[6] de Viteri V S, Fuentes E. Titanium and titanium alloys as biomaterials[J]. Tribology-fundamentals and advancements, 2013, 5: 154-181.
[7] Lambers F M , Bouman A R , Rimnac C M , et al. Microdamage Caused by Fatigue Loading in Human Cancellous Bone: Relationship to Reductions in Bone Biomechanical Performance[J]. Plos One, 2013, 8(12):1-9.
[8] Feng J, Fu J, Lin Z, et al. A review of the design methods of complex topology structures for 3D printing[J]. Visual Computing for Industry, Biomedicine, and Art, 2018, 1(1): 1-16.
[9] Winter B, Butz B, Dieker C, et al. Coexistence of both gyroid chiralities in individual butterfly wing scales of Callophrys rubi[J]. Proceedings of the National Academy of Sciences, 2015, 112(42): 12911-12916.
[10] Wang D W, Zhou Y H, Shen J, et al. Selective laser melting under the reactive atmosphere: A convenient and efficient approach to fabricate ultrahigh strength commercially pure titanium without sacrificing ductility[J]. Materials Science and Engineering: A, 2019, 762 (Aug.5):138078.
[11] Erickson D M, D Chance, Schmitt S, et al. An opinion survey of reported benefits from the use of stereolithographic models [J]. Journal of Oral and Maxillofacial Surgery,1999,57(9):1040-1043.
[12] Petzold R, Zeilhofer H F, Kalender W A. Rapid prototyping technology in medicine—basics and applications [J]. Comput Med Imaging Graph,1999,23(5):277-284.
[13] Poulsen M, Lindsay C, Sullivan T, et al. Stereolithographic modelling as an aid to orbital brachytherapy[J]. International Journal of Radiation Oncology* Biology* Physics, 1999, 44(3): 731-735.
[14] Hutmacher D W. Scaffolds in tissue engineering bone and cartilage[J]. Biomaterials, 2000, 21(24): 2529-2543.
[15] Jee H J, Sachs E. A visual simulation technique for 3D printing[J]. Advances in Engineering Software, 2000, 31(2): 97-106.
[16] Sherwood J K, Riley S L, Palazzolo R, et al. A three-dimensional osteochondral composite scaffold for articular cartilage repair[J]. Biomaterials, 2002, 23(24): 4739-4751.
[17] Freyman T M, Yannas I V, Gibson L J. Cellular materials as porous scaffolds for tissue engineering[J]. Progress in Materials science, 2001, 46(3-4): 273-282.
[18] Jones J R, Hench L L. Regeneration of trabecular bone using porous ceramics[J]. Current Opinion in Solid State and Materials Science, 2003, 7(4-5): 301-307.
[19] Gronet P M, Waskewicz G A, Richardson C. Preformed acrylic cranial implants using fused deposition modeling: a clinical report[J]. The Journal of prosthetic dentistry, 2003, 90(5): 429-433.
[20] Chim H, Hutmacher D W, Chou A M, et al. A comparative analysis of scaffold material modifications for load-bearing applications in bone tissue engineering[J]. International journal of oral and maxillofacial surgery, 2006, 35(10): 928-934.
[21] Gbureck U, Vorndran E, Müller F A, et al. Low temperature direct 3D printed bioceramics and biocomposites as drug release matrices[J]. Journal of Controlled Release, 2007, 122(2): 173-180.
[22] Heinl P, Müller L, Körner C, et al. Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting[J]. Acta biomaterialia, 2008, 4(5): 1536-1544.
[23] Wiria F E, Shyan J Y M, Lim P N, et al. Printing of titanium implant prototype[J]. Materials & Design, 2010, 31: S101-S105.
[24] Fukuda A, Takemoto M, Saito T, et al. Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting[J]. Acta Biomaterialia, 2011, 7(5): 2327-2336.
[25] Hsieh M T, Begley M R, Valdevit L. Architected implant designs for long bones: Advantages of minimal surface-based topologies[J]. Materials & Design, 2021, 207: 109838.
[26] Doroszko M, Falkowska A, Seweryn A. Image-based numerical modeling of the tensile deformation behavior and mechanical properties of additive manufactured Ti–6Al–4V diamond lattice structures[J]. Materials Science and Engineering: A, 2021, 818: 141362.
[27] 王燎, 戴尅戎. 骨科个体化治疗与 3D 打印技术[J]. 医用生物力学, 2014, 29(3): 193-199.
[28] 甄珍, 王健, 奚廷斐, 等. 3D 打印钛金属骨科植入物应用现状[J]. 中国生物医学工程学报, 2019,2(1),: 240-251.
[29] Chen J, Zhang Z, Chen X, et al. Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology[J]. The Journal of prosthetic dentistry, 2014, 112(5): 1088-1095.
[30] 汪铁铮. 北大人民医院完成世界首例 3D 打印全骶骨假体治疗骶骨恶性肿瘤术[J]. 首都食品与医药, 2015,19(1): 64-64.
[31] 苏暄. 刘忠军. 3D 打印技术带来脊柱外科个体化治疗时代[J]. 中国医药科学, 2015, 5(24): 1-4.
[32] 郭芳, 黄硕, 胡敏, 等. 3D打印表面多孔钛根形种植体的生物力学研究 [J]. 医用生物力学,2021,36(01):85-91.
[33] 赵波. 细胞修复结合微孔钛植入物治疗颈椎相关疾病的关键技术研究 [R]. 陕西省:西安交通大学第二附属医院,2020:1-15.
[34] Zeng C, Wen H, Bellamy H, et al. Titanium and nitrogen interactions under laser additive manufacturing conditions[J]. Surface and Coatings Technology, 2019, 378: 124955.
[35] Liu L, Chen C, Zhao R, et al. In-situ nitrogen strengthening of selective laser melted Ti6Al4V with superior mechanical performance[J]. Additive Manufacturing, 2021, 46: 102142.
[36] Peters A B, Zhang D, Hernandez A, et al. Selective laser sintering in reactive atmospheres: Towards in-situ synthesis of net-shaped carbide and nitride ceramics[J]. Additive Manufacturing, 2021, 45: 102052.
[37] Wang G, Shen L, Zhao J, et al. Design and compressive behavior of controllable irregular porous scaffolds: based on voronoi-tessellation and for additive manufacturing[J]. ACS Biomaterials Science & Engineering, 2018, 4(2): 719-727.
[38] Al-Ketan O, Abu Al-Rub R K. MSLattice: A free software for generating uniform and graded lattices based on triply periodic minimal surfaces[J]. Material Design & Processing Communications, 2021, 3(6): e205.
[39] Zhou Y H, Zhang Z H, Wang Y P, et al. Selective laser melting of typical metallic materials: An effective process prediction model developed by energy absorption and consumption analysis[J]. Additive Manufacturing, 2019, 25: 204-217.
[40] Holland L R. Physical properties of titanium. III. the specific heat[J]. Journal of Applied Physics, 1963, 34(8): 2350-2357.
[41] Mills K C. Recommended values of thermophysical properties for selected commercial alloys[M]. Cambridge: Woodhead Publishing, 2002: 205-210.
[42] Fischer P, Romano V, Weber H P, et al. Sintering of commercially pure titanium powder with a Nd: YAG laser source[J]. Acta Materialia, 2003, 51(6): 1651-1662.
[43] Kim H G, Kim W R, Kwon O, et al. Laser beam melting process based on complete-melting energy density for commercially pure titanium[J]. Journal of Manufacturing Processes, 2019, 45 (Sep.): 455-459.
[44] Werner W S M, Glantschnig K, Ambrosch-Draxl C. Optical constants and inelastic electron-scattering data for 17 elemental metals[J]. Journal of Physical and Chemical Reference Data, 2009, 38(4): 1013-1092.
[45] ISO 13314-2011,Mechanical testing of metals - Ductility testing - Compression test for porous and cellular metals [S].Geneva:IX-ISO,2011.
[46] Cai X, Pan C, Wang J, et al. Mechanical behavior, damage mode and mechanism of AlSi10Mg porous structure manufactured by selective laser melting[J]. Journal of Alloys and Compounds, 2022, 897: 162933.
[47] Kim W R, Bang G B, Kwon O, et al. Fabrication of porous pure titanium via selective laser melting under low-energy-density process conditions[J]. Materials & Design, 2020, 195: 109035.
[48] Hasegawa M, Saruta J, Hirota M, et al. A newly created meso-, micro-, and nano-scale rough titanium surface promotes bone-implant integration[J]. International Journal of Molecular Sciences, 2020, 21(3): 783.
[49] Currey J D. Bone and natural composites: properties[J]. Encyclopedia of Materials: Science and Technology(Second Edition), 2011,193(4): 776-781.
[50] Xiao L, Song W, Wang C, et al. Mechanical behavior of open-cell rhombic dodecahedron Ti–6Al–4V lattice structure[J]. Materials Science and Engineering: A, 2015, 640: 375-384.
[51] Ahmadi S M, Campoli G, Yavari S A, et al. Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells[J]. Journal of the mechanical behavior of biomedical materials, 2014, 34: 106-115.
[52] Yan C, Hao L, Hussein A, et al. Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting[J]. Journal of the mechanical behavior of biomedical materials, 2015, 51: 61-73.
[53] 刘路坦, 牛国旗, 周乾坤, 等. 3D 打印多孔钛金属植入物不同孔隙率对骨长入影响的实验研究[J]. 蚌埠医学院学报, 2019, 44(9): 1153-1157.
[54] Kelly C N, Lin A S P, Leguineche K E H, et al. Functional repair of critically sized femoral defects treated with bioinspired titanium gyroid-sheet scaffolds[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 116(4): 104380.

所在学位评定分委会
创新创业学院
国内图书分类号
G305
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/416437
专题创新创业学院
推荐引用方式
GB/T 7714
刘永伦. Ti多孔结构选区激光熔化成型及性能研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032571-刘永伦-创新创业学院.(17586KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘永伦]的文章
百度学术
百度学术中相似的文章
[刘永伦]的文章
必应学术
必应学术中相似的文章
[刘永伦]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。