题名 | Profile evaluation of rail joint in a 3-m wavelength based on unsupervised learning |
作者 | |
通讯作者 | Wang,Yuan; Wang,Ping |
发表日期 | 2022
|
DOI | |
发表期刊 | |
ISSN | 1093-9687
|
EISSN | 1467-8667
|
摘要 | Previously, electronic straightedges with a length of 1 m were widely used to measure the longitudinal profiles of rail joints. However, owing to the lack of an efficient measurement device, rail joints with 3-m wavelengths are seldom studied. In this study, a rail measurement trolley based on the chord-reference method was developed with a measurement wavelength of up to 3 m. A field measurement was performed on a 53-km metro line, and the waveforms of 4340 rail joints were obtained. First, to visualize the distribution of the dataset and to find out the common features, t-distributed stochastic neighbor embedding dimensionality reduction was applied to the rail joint dataset, and each rail joint waveform was mapped to a point in a two-dimensional space. Second, K-means was applied to the rail joint dataset, and six categories of rail joints were obtained. The results indicated that there are two types of rail joints: M-type and W-type, accounting for 18.41% and 76.08% of the total number of joints, respectively, and the remainder are bolted rail joints. Third, to better evaluate rail joint status, the concept of rail joint triangle (RJT) is proposed, and five shape-based features of a rail joint in 3-m wavelength are defined. Finally, using RJT distribution analysis, we observed that the shape-based features provide more essential information about a rail joint, such as symmetry, asymmetry, M-type, or W-type, compared with conventional indexes such as the quality index. Notably, compared with the waveform of a rail joint at 1 m, a 3-m waveform provides significantly more essential information, which can be meaningful for future research on the dynamic impact of rail joints, as well as profile grinding around rail joints. To help other researchers follow our research, our dataset is available on Mendeley Data (RWJ-3 m dataset). |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
WOS记录号 | WOS:000888370600001
|
ESI学科分类 | ENGINEERING
|
Scopus记录号 | 2-s2.0-85143429532
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:4
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/416534 |
专题 | 工学院_系统设计与智能制造学院 工学院 |
作者单位 | 1.School of Civil Engineering,Key Laboratory of High-speed Railway Engineering,Ministry of Education,Southwest Jiaotong University,Chengdu,Sichuan,China 2.North China Municipal Engineering Design & Research Institute Co. Ltd.,Tianjin,China 3.College of Engineering and Technology,Southwest University,Chongqing,China 4.National Supercomputing Center in Shenzhen,Shenzhen,Guangdong,China 5.Institute of Robotics and Intelligent Manufacturing and Shenzhen Institute of Artificial Intelligence and Robotics for Society,The Chinese University of Hong Kong,Shenzhen,Guangdong,China 6.School of System Design and Intelligent Manufacturing,Southern University of Science and Technology,Shenzhen,Guangdong,China |
通讯作者单位 | 系统设计与智能制造学院 |
推荐引用方式 GB/T 7714 |
Cong,Jianli,Yan,Xue,Chen,Rong,et al. Profile evaluation of rail joint in a 3-m wavelength based on unsupervised learning[J]. COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING,2022.
|
APA |
Cong,Jianli.,Yan,Xue.,Chen,Rong.,Gao,Mingyuan.,An,Boyang.,...&Wang,Ping.(2022).Profile evaluation of rail joint in a 3-m wavelength based on unsupervised learning.COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING.
|
MLA |
Cong,Jianli,et al."Profile evaluation of rail joint in a 3-m wavelength based on unsupervised learning".COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING (2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论