题名 | Adversarial VAE with Normalizing Flows for Multi-Dimensional Classification |
作者 | |
通讯作者 | Zhang,Yu |
DOI | |
发表日期 | 2022
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
会议录名称 | |
卷号 | 13534 LNCS
|
页码 | 205-219
|
摘要 | Exploiting correlations among class variables and using them to facilitate the learning process are a key challenge of Multi-Dimensional Classification (MDC) problems. Label embedding is an efficient strategy towards MDC problems. However, previous methods for MDC only use this technique as a way of feature augmentation and train a separate model for each class variable in MDC problems. Such two-stage approaches may cause unstable results and achieve suboptimal performance. In this paper, we propose an end-to-end model called Adversarial Variational AutoEncoder with Normalizing Flow (ADVAE-Flow), which encodes both features and class variables to probabilistic latent spaces. Specifically, considering the heterogeneity of class spaces, we introduce a normalizing flows module to increase the capacity of probabilistic latent spaces. Then adversarial training is adopted to help align transformed latent spaces obtained by normalizing flows. Extensive experiments on eight MDC datasets demonstrate the superiority of the proposed ADVAE-Flow model over state-of-the-art MDC models. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
Scopus记录号 | 2-s2.0-85142763283
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:2
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/416579 |
专题 | 南方科技大学 |
作者单位 | 1.University of California Irvine,Irvine,United States 2.Southern University of Science and Technology,Shenzhen,China 3.Hong Kong University of Science and Technology,Hong Kong 4.City University of Hong Kong,Hong Kong 5.Peng Cheng Laboratory,Shenzhen,China |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Zhang,Wenbo,Gou,Yunhao,Jiang,Yuepeng,et al. Adversarial VAE with Normalizing Flows for Multi-Dimensional Classification[C],2022:205-219.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论