题名 | DISP6D: Disentangled Implicit Shape and Pose Learning for Scalable 6D Pose Estimation |
作者 | |
通讯作者 | Wen,Yilin |
DOI | |
发表日期 | 2022
|
会议名称 | 17th European Conference on Computer Vision (ECCV)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-031-20076-2
|
会议录名称 | |
卷号 | 13669 LNCS
|
页码 | 404-421
|
会议日期 | OCT 23-27, 2022
|
会议地点 | null,Tel Aviv,ISRAEL
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | Scalable 6D pose estimation for rigid objects from RGB images aims at handling multiple objects and generalizing to novel objects. Building on a well-known auto-encoding framework to cope with object symmetry and the lack of labeled training data, we achieve scalability by disentangling the latent representation of auto-encoder into shape and pose sub-spaces. The latent shape space models the similarity of different objects through contrastive metric learning, and the latent pose code is compared with canonical rotations for rotation retrieval. Because different object symmetries induce inconsistent latent pose spaces, we re-entangle the shape representation with canonical rotations to generate shape-dependent pose codebooks for rotation retrieval. We show state-of-the-art performance on two benchmarks containing textureless CAD objects without category and daily objects with categories respectively, and further demonstrate improved scalability by extending to a more challenging setting of daily objects across categories. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
WOS研究方向 | Computer Science
; Imaging Science & Photographic Technology
|
WOS类目 | Computer Science, Artificial Intelligence
; Imaging Science & Photographic Technology
|
WOS记录号 | WOS:000897132300024
|
Scopus记录号 | 2-s2.0-85142754501
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:6
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/416580 |
专题 | 南方科技大学 |
作者单位 | 1.The University of Hong Kong,Hong Kong 2.Brown University,Providence,United States 3.Microsoft Research Asia,Beijing,China 4.Centre for Garment Production Limited,Hong Kong 5.SUSTech,Shenzhen,China 6.Texas A &M University,College Station,United States |
推荐引用方式 GB/T 7714 |
Wen,Yilin,Li,Xiangyu,Pan,Hao,et al. DISP6D: Disentangled Implicit Shape and Pose Learning for Scalable 6D Pose Estimation[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022:404-421.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论