题名 | Adversarial Learning Based Structural Brain-Network Generative Model for Analyzing Mild Cognitive Impairment |
作者 | |
通讯作者 | Wang,Shuqiang |
DOI | |
发表日期 | 2022
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
会议录名称 | |
卷号 | 13535 LNCS
|
页码 | 361-375
|
摘要 | Mild cognitive impairment (MCI) is a precursor of Alzheimer’s disease (AD), and the detection of MCI is of great clinical significance. Analyzing the structural brain networks of patients is vital for the recognition of MCI. However, the current studies on structural brain networks are totally dependent on specific toolboxes, which is time-consuming and subjective. Few tools can obtain the structural brain networks from brain diffusion tensor images. In this work, an adversarial learning-based structural brain-network generative model (SBGM) is proposed to directly learn the structural connections from brain diffusion tensor images. By analyzing the differences in structural brain networks across subjects, we found that the structural brain networks of subjects showed a consistent trend from elderly normal controls (NC) to early mild cognitive impairment (EMCI) to late mild cognitive impairment (LMCI): structural connectivity progressed in a progressively weaker direction as the condition worsened. In addition, our proposed model tri-classifies EMCI, LMCI, and NC subjects, achieving a classification accuracy of 83.33% on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [Scopus记录] |
Scopus记录号 | 2-s2.0-85142709633
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/416586 |
专题 | 南方科技大学 |
作者单位 | 1.Southern University of Science and Technology,Shenzhen,518000,China 2.Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences,Shenzhen,518000,China |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Kong,Heng,Pan,Junren,Shen,Yanyan,et al. Adversarial Learning Based Structural Brain-Network Generative Model for Analyzing Mild Cognitive Impairment[C],2022:361-375.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论