中文版 | English
题名

Dual Distribution Alignment Network for Generalizable Person Re-Identification

作者
通讯作者Dai,Pingyang
发表日期
2021
会议录名称
卷号
2A
页码
1054-1062
摘要
Domain generalization (DG) offers a preferable real-world setting for Person Re-Identification (Re-ID), which trains a model using multiple source domain datasets and expects it to perform well in an unseen target domain without any model updating. Unfortunately, most DG approaches are designed explicitly for classification tasks, which fundamentally differs from the retrieval task Re-ID. Moreover, existing applications of DG in Re-ID cannot correctly handle the massive variation among Re-ID datasets. In this paper, we identify two fundamental challenges in DG for Person Re-ID: domain-wise variations and identity-wise similarities. To this end, we propose an end-to-end Dual Distribution Alignment Network (DDAN) to learn domain-invariant features with dual-level constraints: the domain-wise adversarial feature learning and the identity-wise similarity enhancement. These constraints effectively reduce the domain-shift among multiple source domains further while agreeing to real-world scenarios. We evaluate our method in a large-scale DG Re-ID benchmark and compare it with various cutting-edge DG approaches. Quantitative results show that DDAN achieves state-of-the-art performance.
学校署名
其他
语种
英语
相关链接[Scopus记录]
资助项目
Applied Basic Research Foundation of Yunnan Province[2019B1515120049];National Natural Science Foundation of China[61702136];National Natural Science Foundation of China[61772443];National Natural Science Foundation of China[61802324];National Natural Science Foundation of China[62002305];National Science Fund for Distinguished Young Scholars[62025603];National Natural Science Foundation of China[62072386];National Natural Science Foundation of China[62072387];National Natural Science Foundation of China[62072389];National Natural Science Foundation of China[U1705262];
Scopus记录号
2-s2.0-85129985154
来源库
Scopus
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/416594
专题工学院_计算机科学与工程系
作者单位
1.Media Analytics and Computing Lab,Department of Artificial Intelligence,School of Informatics,Xiamen University,China
2.Department of Computer Science and Engineering,Southern University of Science and Technology,China
3.Noah's Ark Lab,Huawei Tech,China
4.School of Information Engineering,Zhengzhou University,China
5.Cloud & AI,Huawei Tech,China
6.Institute of Artificial Intelligence,Xiamen University,China
推荐引用方式
GB/T 7714
Chen,Peixian,Dai,Pingyang,Liu,Jianzhuang,et al. Dual Distribution Alignment Network for Generalizable Person Re-Identification[C],2021:1054-1062.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen,Peixian]的文章
[Dai,Pingyang]的文章
[Liu,Jianzhuang]的文章
百度学术
百度学术中相似的文章
[Chen,Peixian]的文章
[Dai,Pingyang]的文章
[Liu,Jianzhuang]的文章
必应学术
必应学术中相似的文章
[Chen,Peixian]的文章
[Dai,Pingyang]的文章
[Liu,Jianzhuang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。