[1] CLAIRE, GRIERSON, ERIK, et al. Root hairs.[J]. The Arabidopsis book / American Society of Plant Biologists, 2014, 12: e0172.
[2] SMITH S E, SMITH F A. Roles of Arbuscular Mycorrhizas in Plant Nutrition and Growth: New Paradigms from Cellular to Ecosystem Scales[J/OL]. Annual Review of Plant Biology, 2011, 62(1): 227-250.
[3] DE BAETS S, DENBIGH T D G, SMYTH K M, et al. Micro-scale interactions between Arabidopsis root hairs and soil particles influence soil erosion[J/OL]. Communications Biology, 2020, 3(1): 164.
[4] HEPLER P K, VIDALI L, CHEUNG A Y. Polarized Cell Growth in Higher Plants[J/OL]. Annual Review of Cell and Developmental Biology, 2001, 17(1): 159-187.
[5] ROUNDS C M, BEZANILLA M. Growth Mechanisms in Tip-Growing Plant Cells[J/OL]. Annual Review of Plant Biology, 2013, 64(1): 243-265.
[6] DATTA S, KIM C M, PERNAS M, et al. Root hairs: development, growth and evolution at the plant-soil interface[J/OL]. Plant and Soil, 2011, 346(1-2): 1-14.
[7] SALAZAR-HENAO J E, VÉLEZ-BERMÚDEZ I C, SCHMIDT W. The regulation and plasticity of root hair patterning and morphogenesis[J/OL]. Development, 2016, 143(11): 1848-1858.
[8] GALWAY M E, MASUCCI J D, LLOYD A M, et al. The TTG gene is required to specify epidermal cell fate and cell patterning in the Arabidopsis root.[J]. Developmental Biology, 1994, 166(2): 740-754.
[9] BALCEROWICZ D, SCHOENAERS S, VISSENBERG K. Cell Fate Determination and the Switch from Diffuse Growth to Planar Polarity in Arabidopsis Root Epidermal Cells[J/OL]. Frontiers in Plant Science, 2015, 6
[2022-07-22].
[10] CUI S, SUZAKI T, TOMINAGA-WADA R, et al. Regulation and functional diversification of root hairs[J/OL]. Seminars in Cell & Developmental Biology, 2018, 83: 115-122.
[11] LEE M M, SCHIEFELBEIN J. WEREWOLF, a MYB-Related Protein in Arabidopsis, Is a Position-Dependent Regulator of Epidermal Cell Patterning[J/OL]. Cell, 1999, 99(5): 473-483.
[12] PAYNE C T, ZHANG F, LLOYD A M. GL3 Encodes a bHLH Protein That Regulates Trichome Development in Arabidopsis Through Interaction With GL1 and TTG1[J/OL]. Genetics, 2000, 156(3): 1349-1362.
[13] KWAK S H, SHEN R, SCHIEFELBEIN J. Positional Signaling Mediated by a Receptor-like Kinase in Arabidopsis[J/OL]. Science, 2005, 307(5712): 1111-1113.
[14] KIRIK V, SIMON M, HUELSKAMP M, et al. The ENHANCER OF TRY AND CPC1 gene acts redundantly with TRIPTYCHON and CAPRICE in trichome and root hair cell patterning in Arabidopsis[J/OL]. Developmental Biology, 2004, 268(2): 506-513.
[15] WADA T, TACHIBANA T, SHIMURA Y, et al. Epidermal Cell Differentiation in Arabidopsis Determined by a Myb Homolog, CPC[J/OL]. Science, 1997, 277(5329): 1113-1116.
[16] SCHIEFELBEIN J, HUANG L, ZHENG X. Regulation of epidermal cell fate in Arabidopsis roots: the importance of multiple feedback loops[J/OL]. Frontiers in Plant Science, 2014, 5
[2022-07-22].
[17] KANG Y H, KIRIK V, HULSKAMP M, et al. The MYB23 Gene Provides a Positive Feedback Loop for Cell Fate Specification in the Arabidopsis Root Epidermis[J/OL]. The Plant Cell, 2009, 21(4): 1080-1094.
[18] HASSAN H, SCHERES B, BLILOU I. JACKDAW controls epidermal patterning in the Arabidopsis root meristem through a non-cell-autonomous mechanism[J/OL]. Development, 2010, 137(9): 1523-1529.
[19] SONG J H, KWAK S H, NAM K H, et al. QUIRKY regulates root epidermal cell patterning through stabilizing SCRAMBLED to control CAPRICE movement in Arabidopsis[J/OL]. Nature Communications, 2019, 10(1): 1744.
[20] HAN G, WEI X, DONG X, et al. Arabidopsis ZINC FINGER PROTEIN1 Acts Downstream of GL2 to Repress Root Hair Initiation and Elongation by Directly Suppressing bHLH Genes[J/OL]. The Plant Cell, 2020, 32(1): 206-225.
[21] YI K, MENAND B, BELL E, et al. A basic helix-loop-helix transcription factor controls cell growth and size in root hairs[J/OL]. Nature Genetics, 2010, 42(3): 264-267.
[22] VIJAYAKUMAR P, DATTA S, DOLAN L. ROOT HAIR DEFECTIVE SIX ‐ LIKE 4 ( RSL 4) promotes root hair elongation by transcriptionally regulating the expression of genes required for cell growth[J/OL]. New Phytologist, 2016, 212(4): 944-953.
[23] FISCHER U, IKEDA Y, GREBE M. Planar polarity of root hair positioning in Arabidopsis[J/OL]. Biochemical Society Transactions, 2007, 35(1): 149-151.
[24] STANISLAS T, HÜSER A, BARBOSA I C R, et al. Arabidopsis D6PK is a lipid domain-dependent mediator of root epidermal planar polarity[J/OL]. Nature Plants, 2015, 1(11): 15162.
[25] NAKAMURA M, GREBE M. Outer, inner and planar polarity in the Arabidopsis root[J/OL]. Current Opinion in Plant Biology, 2018, 41: 46-53.
[26] TAKATSUKA H, ITO M. Cytoskeletal Control of Planar Polarity in Root Hair Development[J/OL]. Frontiers in Plant Science, 2020, 11: 580935.
[27] MOLENDIJK A J. Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth[J/OL]. The EMBO Journal, 2001, 20(11): 2779-2788.
[28] ŽÁRSKÝ V, FOWLER J. ROP (Rho-Related Protein from Plants) GTPases for Spatial Control of Root Hair Morphogenesis[M/OL]//EMONS A M C, KETELAAR T. Root Hairs: volume 12. Berlin, Heidelberg: Springer Berlin Heidelberg,2009:191-209
[2022-06-20].
[29] GENDRE D, BARAL A, DANG X, et al. Rho-of-plant-activated root hair formation requires Arabidopsis YIP4a/b gene function[J/OL]. Development, 2019: dev.168559.
[30] BIBIKOVA T N, JACOB T, DAHSE I, et al. Localized changes in apoplastic and cytoplasmic pH are associated with root hair development in Arabidopsis thaliana[J]. The Company of Biologists Ltd, 1998(15).
[31] FOREMAN J, DEMIDCHIK V, BOTHWELL J H F, et al. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth[J/OL]. Nature, 2003, 422(6930): 442-446.
[32] SCHIEFELBEIN JohnW, SHIPLEY A, ROWSE P. Calcium influx at the tip of growing root-hair cells of Arabidopsis thaliana[J/OL]. Planta, 1992, 187(4)
[2022-03-30].
[33] COSGROVE D J. Growth of the plant cell wall[J/OL]. Nature Reviews Molecular Cell Biology, 2005, 6(11): 850-861.
[34] FAVERY B, RYAN E, FOREMAN J, et al. KOJAK encodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis[J/OL]. Genes & Development, 2001, 15(1): 79-89.
[35] PARK S, SZUMLANSKI A L, GU F, et al. A role for CSLD3 during cell-wall synthesis in apical plasma membranes of tip-growing root-hair cells[J/OL]. Nature Cell Biology, 2011, 13(8): 973-980.
[36] SINGH S K, FISCHER U, SINGH M, et al. Insight into the early steps of root hair formation revealed by the procuste1 cellulose synthase mutant of Arabidopsis thaliana[J/OL]. BMC Plant Biology, 2008, 8(1): 57.
[37] CHO H T, COSGROVE D J. Regulation of Root Hair Initiation and Expansin Gene Expression in Arabidopsis[W][J/OL]. The Plant Cell, 2002, 14(12): 3237-3253.
[38] LIN C, CHOI H S, CHO H T. Root hair-specific EXPANSIN A7 is required for root hair elongation in Arabidopsis[J/OL]. Molecules and Cells, 2011, 31(4): 393-397.
[39] VELASQUEZ S M, RICARDI M M, DOROSZ J G, et al. O-Glycosylated Cell Wall Proteins Are Essential in Root Hair Growth[J/OL]. Science, 2011, 332(6036): 1401-1403.
[40] CRADDOCK C, LAVAGI I, YANG Z. New insights into Rho signaling from plant ROP/Rac GTPases[J/OL]. Trends in Cell Biology, 2012, 22(9): 492-501.
[41] HUANG G, LI E, GE F, et al. Arabidopsis Rop GEF 4 and Rop GEF 10 are important for FERONIA ‐mediated developmental but not environmental regulation of root hair growth[J/OL]. New Phytologist, 2013, 200(4): 1089-1101.
[42] LI E, ZHANG Y L, SHI X, et al. A positive feedback circuit for ROP-mediated polar growth[J/OL]. Molecular Plant, 2021, 14(3): 395-410.
[43] CAROL R J, TAKEDA S, LINSTEAD P, et al. A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells[J/OL]. Nature, 2005, 438(7070): 1013-1016.
[44] KANG E, ZHENG M, ZHANG Y, et al. The Microtubule-Associated Protein MAP18 Affects ROP2 GTPase Activity during Root Hair Growth[J/OL]. Plant Physiology, 2017, 174(1): 202-222.
[45] GE F, CHAI S, LI S, et al. Targeting and signaling of Rho of plants guanosine triphosphatases require synergistic interaction between guanine nucleotide inhibitor and vesicular trafficking[J/OL]. Journal of Integrative Plant Biology, 2020, 62(10): 1484-1499.
[46] MUCHA E, FRICKE I, SCHAEFER A, et al. Rho proteins of plants – Functional cycle and regulation of cytoskeletal dynamics[J/OL]. European Journal of Cell Biology, 2011, 90(11): 934-943.
[47] CUI X, WANG S, HUANG Y, et al. Arabidopsis SYP121 acts as a ROP2 effector in the regulation of root hair tip growth[J/OL]. Molecular Plant, 2022, 0(0)
[2022-04-29].
[48] MONSHAUSEN G B, BIBIKOVA T N, MESSERLI M A, et al. Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs[J/OL]. Proceedings of the National Academy of Sciences, 2007, 104(52): 20996-21001.
[49] MANGANO S, MARTÍNEZ PACHECO J, MARINO-BUSLJE C, et al. How Does pH Fit in with Oscillating Polar Growth?[J/OL]. Trends in Plant Science, 2018, 23(6): 479-489.
[50] MORI I C, SCHROEDER J I. Reactive Oxygen Species Activation of Plant Ca2+ Channels. A Signaling Mechanism in Polar Growth, Hormone Transduction, Stress Signaling, and Hypothetically Mechanotransduction[J/OL]. Plant Physiology, 2004, 135(2): 702-708.
[51] MANGANO S, DENITA-JUAREZ S P, CHOI H S, et al. Molecular link between auxin and ROS-mediated polar growth[J/OL]. Proceedings of the National Academy of Sciences, 2017, 114(20): 5289-5294.
[52] KUBĚNOVÁ L, TICHÁ M, ŠAMAJ J, et al. ROOT HAIR DEFECTIVE 2 vesicular delivery to the apical plasma membrane domain during Arabidopsis root hair development[J/OL]. Plant Physiology, 2022, 188(3): 1563-1585.
[53] WYMER C L, BIBIKOVA T N, GILROY S. Cytoplasmic free calcium distributions during the development of root hairs of Arabidopsis thaliana[J/OL]. The Plant Journal, 1997, 12(2): 427-439.
[54] MONSHAUSEN G B, MESSERLI M A, GILROY S. Imaging of the Yellow Cameleon 3.6 Indicator Reveals That Elevations in Cytosolic Ca2+ Follow Oscillating Increases in Growth in Root Hairs of Arabidopsis[J/OL]. Plant Physiology, 2008, 147(4): 1690-1698.
[55] MESSERLI M A, CRÉTON R, JAFFE L F, et al. Periodic increases in elongation rate precede increases in cytosolic Ca2+ during pollen tube growth[J/OL]. Developmental Biology, 2000, 222(1): 84-98.
[56] KWON T, SPARKS J A, LIAO F, et al. ERULUS is a Plasma Membrane-Localized Receptor-Like Kinase that Specifies Root Hair Growth by Maintaining Tip-Focused Cytoplasmic Calcium Oscillations.[J]. Plant Cell, 2018: tpc.00316.2018.
[57] SCHOENAERS S, BALCEROWICZ D, BREEN G, et al. The Auxin-Regulated CrRLK1L Kinase ERULUS Controls Cell Wall Composition during Root Hair Tip Growth[J/OL]. Current Biology, 2018, 28(5): 722-732.e6.
[58] LAOHAVISIT A, SHANG Z, RUBIO L, et al. Arabidopsis Annexin1 Mediates the Radical-Activated Plasma Membrane Ca 2+ - and K + -Permeable Conductance in Root Cells[J/OL]. The Plant Cell, 2012, 24(4): 1522-1533.
[59] ZHANG S, PAN Y, TIAN W, et al. Arabidopsis CNGC14 Mediates Calcium Influx Required for Tip Growth in Root Hairs[J/OL]. Molecular Plant, 2017, 10(7): 1004-1006.
[60] BROST C, STUDTRUCKER T, REIMANN R, et al. Multiple cyclic nucleotide‐gated channels coordinate calcium oscillations and polar growth of root hairs[J/OL]. The Plant Journal, 2019: tpj.14371. DOI:10.1111/tpj.14371.
[61] TAN Y Q, YANG Y, ZHANG A, et al. Three CNGC Family Members, CNGC5, CNGC6, and CNGC9, Are Required for Constitutive Growth of Arabidopsis Root Hairs as Ca2+-Permeable Channels[J/OL]. Plant Communications, 2020, 1(1): 100001.
[62] KANDASAMY M K, MCKINNEY E C, MEAGHER R B. A Single Vegetative Actin Isovariant Overexpressed under the Control of Multiple Regulatory Sequences Is Sufficient for Normal Arabidopsis Development[J/OL]. The Plant Cell, 2009, 21(3): 701-718.
[63] KETELAAR T. The actin cytoskeleton in root hairs: all is fine at the tip[J/OL]. Current Opinion in Plant Biology, 2013, 16(6): 749-756.
[64] DONG C H, XIA G X, HONG Y, et al. ADF Proteins Are Involved in the Control of Flowering and Regulate F-Actin Organization, Cell Expansion, and Organ Growth in Arabidopsis[J]. 14.
[65] RAMACHANDRAN S, CHRISTENSEN H E M, ISHIMARU Y, et al. Profilin Plays a Role in Cell Elongation, Cell Shape Maintenance, and Flowering in Arabidopsis[J/OL]. Plant Physiology, 2000, 124(4): 1637-1647.
[66] YI K, GUO C, CHEN D, et al. Cloning and Functional Characterization of a Formin-Like Protein (AtFH8) from Arabidopsis[J/OL]. Plant Physiology, 2005, 138(2): 1071-1082.
[67] MATHUR J, MATHUR N, KERNEBECK B, et al. Mutations in Actin-Related Proteins 2 and 3 Affect Cell Shape Development in Arabidopsis[J/OL]. The Plant Cell, 2003, 15(7): 1632-1645.
[68] PARK E, NEBENFÜHR A. Myosin XIK of Arabidopsis thaliana Accumulates at the Root Hair Tip and Is Required for Fast Root Hair Growth[J/OL]. PLoS ONE, 2013, 8(10): e76745.
[69] PROKHNEVSKY A I, PEREMYSLOV V V, DOLJA V V. Overlapping functions of the four class XI myosins in Arabidopsis growth, root hair elongation, and organelle motility[J/OL]. Proceedings of the National Academy of Sciences, 2008, 105(50): 19744-19749.
[70] BAO Y, KOST B, CHUA N H. Reduced expression of α-tubulin genes in Arabidopsis thaliana specifically affects root growth and morphology, root hair development and root gravitropism: Reduced α-tubulin expression affects Arabidopsis roots[J/OL]. The Plant Journal, 2001, 28(2): 145-157.
[71] OVEČKA M, BERSON T, BECK M, et al. Structural Sterols Are Involved in Both the Initiation and Tip Growth of Root Hairs in Arabidopsis thaliana[J/OL]. The Plant Cell, 2010, 22(9): 2999-3019.
[72] LI R, LIU P, WAN Y, et al. A Membrane Microdomain-Associated Protein, Arabidopsis Flot1, Is Involved in a Clathrin-Independent Endocytic Pathway and Is Required for Seedling Development[J/OL]. The Plant Cell, 2012, 24(5): 2105-2122.
[73] SIMONS K. Lipid rafts and signal transduction.[J]. Nat Rev Mol Cell Biol, 2000, 1.
[74] LV X, JING Y, XIAO J, et al. Membrane microdomains and the cytoskeleton constrain AtHIR1 dynamics and facilitate the formation of an AtHIR1‐associated immune complex[J]. The Plant Journal, 2017, 90(1): 3.
[75] MENG Y, LIU H, DONG Z, et al. The dynamics and endocytosis of Flot1 protein in response to flg22 in Arabidopsis[J]. Journal of Plant Physiology, 2017, 215: 73.
[76] LIU P, LI R L, ZHANG L, et al. Lipid microdomain polarization is required for NADPH oxidase-dependent ROS signaling in Picea meyeri pollen tube tip growth[J/OL]. The Plant Journal, 2009, 60(2): 303-313.
[77] MARTIN S W, KONOPKA J B. Lipid Raft Polarization Contributes to Hyphal Growth in Candida albicans[J]. Eukaryotic Cell, 2004, 3(3): 675.
[78] STEINBERG G. Hyphal Growth: a Tale of Motors, Lipids, and the Spitzenkorper[J]. Eukaryotic Cell, 2007.
[79] MARKUS, GREBE, AND, et al. Arabidopsis Sterol Endocytosis Involves Actin-Mediated Trafficking via ARA6-Positive Early Endosomes[J]. Current Biology, 2003.
[80] OWEN D M, RENTERO C, MAGENAU A, et al. Quantitative imaging of membrane lipid order in cells and organisms[J]. Nature Protocol, 2011, 7(1): 24-35.
[81] HUANG D, SUN Y, MA Z, et al. Salicylic acid-mediated plasmodesmal closure via Remorin-dependent lipid organization[J/OL]. Proceedings of the National Academy of Sciences, 2019, 116(42): 21274-21284.
[82] XU F, SUO X, LI F, et al. Membrane lipid raft organization during cotton fiber development[J/OL]. Journal of Cotton Research, 2020, 3(1): 13.
[83] GALWAY M E, HECKMAN J W, SCHIEFELBEIN J W. Growth and ultrastructure ofArabidopsis root hairs: therhd3 mutation alters vacuole enlargement and tip growth[J/OL]. Planta, 1997, 201(2): 209-218.
[84] CHEUNG A Y, WU H ming. Structural and Signaling Networks for the Polar Cell Growth Machinery in Pollen Tubes[J/OL]. Annual Review of Plant Biology, 2008, 59(1): 547-572.
[85] KANG B H, NIELSEN E, PREUSS M L, et al. Electron Tomography of RabA4b- and PI-4Kβ1-Labeled Trans Golgi Network Compartments in Arabidopsis[J/OL]. Traffic, 2011, 12(3): 313-329.
[86] KUSANO H, TESTERINK C, VERMEER J E M, et al. The Arabidopsis Phosphatidylinositol Phosphate 5-Kinase PIP5K3 Is a Key Regulator of Root Hair Tip Growth[J/OL]. The Plant Cell, 2008, 20(2): 367-380.
[87] LI M, ZHU Y, LI S, et al. Regulation of Phytohormones on the Growth and Development of Plant Root Hair[J/OL]. Frontiers in Plant Science, 2022, 13: 865302.
[88] FISCHER U, IKEDA Y, LJUNG K, et al. Vectorial Information for Arabidopsis Planar Polarity Is Mediated by Combined AUX1, EIN2, and GNOM Activity[J/OL]. Current Biology, 2006, 16(21): 2143-2149.
[89] LEYSER O. Auxin Signaling[J/OL]. Plant Physiology, 2018, 176(1): 465-479.
[90] MANGANO S, DENITA-JUAREZ S P, CHOI H S, et al. Molecular link between auxin and ROS-mediated polar growth[J/OL]. Proceedings of the National Academy of Sciences, 2017, 114(20): 5289-5294.
[91] DINDAS J, SCHERZER S, ROELFSEMA M R G, et al. AUX1-mediated root hair auxin influx governs SCFTIR1/AFB-type Ca2+ signaling[J/OL]. Nature Communications, 2018, 9(1): 1174.
[92] QIU Y, TAO R, FENG Y, et al. EIN3 and RSL4 interfere with an MYB–bHLH–WD40 complex to mediate ethylene-induced ectopic root hair formation in Arabidopsis[J/OL]. Proceedings of the National Academy of Sciences, 2021, 118(51): e2110004118.
[93] FENG Y, XU P, LI B, et al. Ethylene promotes root hair growth through coordinated EIN3/EIL1 and RHD6/RSL1 activity in Arabidopsis[J/OL]. Proceedings of the National Academy of Sciences, 2017, 114(52): 13834-13839.
[94] KIM H, PARK P J, HWANG H J, et al. Brassinosteroid Signals Control Expression of the AXR3/IAA17 Gene in the Cross-Talk Point with Auxin in Root Development[J/OL]. Bioscience, Biotechnology, and Biochemistry, 2006, 70(4): 768-773.
[95] KUPPUSAMY K T, CHEN A Y, NEMHAUSER J L. Steroids are required for epidermal cell fate establishment in Arabidopsis roots[J/OL]. Proceedings of the National Academy of Sciences, 2009, 106(19): 8073-8076.
[96] CHENG Y, ZHU W, CHEN Y, et al. Brassinosteroids control root epidermal cell fate via direct regulation of a MYB-bHLH-WD40 complex by GSK3-like kinases[J/OL]. eLife, 2014, 3: e02525.
[97] ZHANG S, HUANG L, YAN A, et al. Multiple phytohormones promote root hair elongation by regulating a similar set of genes in the root epidermis in Arabidopsis[J/OL]. Journal of Experimental Botany, 2016, 67(22): 6363-6372.
[98] ZHU Z, AN F, FENG Y, et al. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis[J/OL]. Proceedings of the National Academy of Sciences, 2011, 108(30): 12539-12544.
[99] HAN X, ZHANG M, YANG M, et al. Arabidopsis JAZ Proteins Interact with and Suppress RHD6 Transcription Factor to Regulate Jasmonate-Stimulated Root Hair Development[J]. The Plant Cell, 2020(4): 4.
[100] LOMBARDO M C, LAMATTINA L. Abscisic acid and nitric oxide modulate cytoskeleton organization, root hair growth and ectopic hair formation in Arabidopsis[J/OL]. Nitric Oxide, 2018, 80: 89-97.
[101] RYMEN B, KAWAMURA A, SCHÄFER S, et al. ABA Suppresses Root Hair Growth via the OBP4 Transcriptional Regulator[J/OL]. Plant Physiology, 2017, 173(3): 1750-1762.
[102] OU Y, KUI H, LI J. Receptor-like Kinases in Root Development: Current Progress and Future Directions[J/OL]. Molecular Plant, 2021, 14(1): 166-185.
[103] BOISSON-DERNIER A, FRANCK C M, LITUIEV D S, et al. Receptor-like cytoplasmic kinase MARIS functions downstream of Cr RLK1L-dependent signaling during tip growth[J/OL]. Proceedings of the National Academy of Sciences, 2015, 112(39): 12211-12216.
[104] FRANCK C M, WESTERMANN J, BÜRSSNER S, et al. The Protein Phosphatases ATUNIS1 and ATUNIS2 Regulate Cell Wall Integrity in Tip-Growing Cells[J/OL]. The Plant Cell, 2018, 30(8): 1906-1923.
[105] BATES T R, LYNCH J P. Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability[J/OL]. Plant, Cell and Environment, 1996, 19(5): 529-538.
[106] SCHMIDT W, SCHIKORA A. Different Pathways Are Involved in Phosphate and Iron Stress-Induced Alterations of Root Epidermal Cell Development[J/OL]. Plant Physiology, 2001, 125(4): 2078-2084.
[107] SONG L, YU H, DONG J, et al. The Molecular Mechanism of Ethylene-Mediated Root Hair Development Induced by Phosphate Starvation[J/OL]. PLOS Genetics, 2016, 12(7): e1006194.
[108] LIU M, LIU X X, HE X L, et al. Ethylene and nitric oxide interact to regulate the magnesium deficiency‐induced root hair development in Arabidopsis[J/OL]. New Phytologist, 2017, 213(3): 1242-1256.
[109] ABOZEID A, YING Z, LIN Y, et al. Ethylene Improves Root System Development under Cadmium Stress by Modulating Superoxide Anion Concentration in Arabidopsis thaliana[J/OL]. Frontiers in Plant Science, 2017, 8
[2022-08-15].
[110] WEI YANG T J, PERRY P J, CIANI S, et al. Manganese deficiency alters the patterning and development of root hairs in Arabidopsis[J/OL]. Journal of Experimental Botany, 2008, 59(12): 3453-3464.
[111] CANALES J, CONTRERAS-LÓPEZ O, ÁLVAREZ J M, et al. Nitrate induction of root hair density is mediated by TGA1/TGA4 and CPC transcription factors in Arabidopsis thaliana[J/OL]. The Plant Journal, 2017, 92(2): 305-316.
[112] BIENERT M D, WERNER L M, WIMMER M A, et al. Root hairs: the villi of plants[J/OL]. Biochemical Society Transactions, 2021: BST20200716.
[113] BAHMANI R, KIM D G, KIM J A, et al. The Density and Length of Root Hairs Are Enhanced in Response to Cadmium and Arsenic by Modulating Gene Expressions Involved in Fate Determination and Morphogenesis of Root Hairs in Arabidopsis[J/OL]. Frontiers in Plant Science, 2016, 7
[2022-08-15].
[114] BLACKWELL H E, ZHAO Y. Chemical Genetic Approaches to Plant Biology[J/OL]. Plant Physiology, 2003, 133(2): 448-455.
[115] MITCHISON T J. Towards a pharmacological genetics[J/OL]. Chemistry & Biology, 1994, 1(1): 3-6.
[116] SCHREIBER S L. Chemical genetics resulting from a passion for synthetic organic chemistry[J/OL]. Bioorganic & Medicinal Chemistry, 1998, 6(8): 1127-1152.
[117] ALONSO J M, ECKER J R. Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis.[J]. Nature Reviews Genetics, 2006, 7(7): 524-536.
[118] SERRANO M, KOMBRINK E, MEESTERS C. Considerations for designing chemical screening strategies in plant biology[J/OL]. Frontiers in Plant Science, 2015, 6
[2022-07-25].
[119] TÓTH R, VAN DER HOORN R A L. Emerging principles in plant chemical genetics[J/OL]. Trends in Plant Science, 2010, 15(2): 81-88.
[120] PARK S Y, FUNG P, NISHIMURA N, et al. Abscisic Acid Inhibits Type 2C Protein Phosphatases via the PYR/PYL Family of START Proteins[J/OL]. Science, 2009, 324(5930): 1068-1071.
[121] DE RYBEL B, AUDENAERT D, VERT G, et al. Chemical Inhibition of a Subset of Arabidopsis thaliana GSK3-like Kinases Activates Brassinosteroid Signaling[J/OL]. Chemistry & Biology, 2009, 16(6): 594-604.
[122] NAKANO T, NAKASHITA H, SEKIMATA K, et al. The Influence of Chemical Genetics on Plant Science: Shedding Light on Functions and Mechanism of Action of Brassinosteroids Using Biosynthesis Inhibitors[J/OL]. Journal of Plant Growth Regulation, 2003, 22(4): 336-349.
[123] LUMBA S, BUNSICK M, MCCOURT P. Chemical genetics and strigolactone perception[J/OL]. F1000Research, 2017, 6: 975.
[124] MA Q, GRONES P, ROBERT S. Auxin signaling: a big question to be addressed by small molecules[J/OL]. Journal of Experimental Botany, 2018, 69(2): 313-328.
[125] TORII K U, HAGIHARA S, UCHIDA N, et al. Harnessing synthetic chemistry to probe and hijack auxin signaling[J/OL]. New Phytologist, 2018, 220(2): 417-424.
[126] BEKTAS Y, EULGEM T. Synthetic plant defense elicitors[J/OL]. Frontiers in Plant Science, 2015, 5
[2022-07-24].
[127] NAKAMICHI N, YAMAGUCHI J, SATO A, et al. Chemical biology to dissect molecular mechanisms underlying plant circadian clocks[J/OL]. New Phytologist, 2022: nph.18298.
[128] HICKS G R, RAIKHEL N V. Advances in dissecting endomembrane trafficking with small molecules[J/OL]. Current Opinion in Plant Biology, 2010, 13(6): 706-713.
[129] NORAMBUENA L, TEJOS R. Chemical Genetic Dissection of Membrane Trafficking[J/OL]. Annual Review of Plant Biology, 2017, 68(1): 197-224.
[130] DEJONGHE W, RUSSINOVA E. Plant Chemical Genetics: From Phenotype-Based Screens to Synthetic Biology[J/OL]. Plant Physiology, 2017, 174(1): 5-20.
[131] MCCOURT P, DESVEAUX D. Plant chemical genetics[J/OL]. New Phytologist, 2010, 185(1): 15-26.
[132] ZHANG C, BROWN M Q, VAN DE VEN W, et al. Endosidin2 targets conserved exocyst complex subunit EXO70 to inhibit exocytosis[J/OL]. Proceedings of the National Academy of Sciences, 2016, 113(1)
[2022-08-03].
[133] MOON J Y, ADAMS E, MIYAZAKI T, et al. Cesium tolerance is enhanced by a chemical which binds to BETA-GLUCOSIDASE 23 in Arabidopsis thaliana[J/OL]. Scientific Reports, 2021, 11(1): 21109.
[134] COTTIER. The yeast three-hybrid system as an experimental platform to identify proteins interacting with small signaling molecules in plant cells: Potential and limitations[J/OL]. Frontiers in Plant Science, 2011
[2022-08-01].
[135] DUFF, JR. M R, GRUBBS J, HOWELL E E. Isothermal Titration Calorimetry for Measuring Macromolecule-Ligand Affinity[J/OL]. Journal of Visualized Experiments, 2011(55): 2796.
[136] CUI Z, LI C, CHEN P, et al. An update of label-free protein target identification methods for natural active products[J/OL]. Theranostics, 2022, 12(4): 1829-1854.
[137] SUN X, LI Y, HE W, et al. Pyrazinamide and derivatives block ethylene biosynthesis by inhibiting ACC oxidase[J/OL]. Nature Communications, 2017, 8(1): 15758.
[138] ZHU Y, LI H jiang, SU Q, et al. A phenotype-directed chemical screen identifies ponalrestat as an inhibitor of the plant flavin monooxygenase YUCCA in auxin biosynthesis[J/OL]. Journal of Biological Chemistry, 2019, 294(52): 19923-19933.
[139] MANGELSDORF D J, THUMMEL C, BEATO M, et al. The nuclear receptor superfamily: the second decade.[J]. Cell, 2000, 83(6): 835-839.
[140] ROSNER W. The Functions of Corticosteroid-Binding Globulin and Sex Hormone-Binding Globulin: Recent Advances*[J/OL]. Endocrine Reviews, 1990, 11(1): 80-91.
[141] WEHLING, M. SPECIFIC, NONGENOMIC ACTIONS OF STEROID HORMONES[J]. 1997, 59(1): 365-393.
[142] MEYER C, SCHMID R, SCRIBA P C, et al. Purification and partial sequencing of high-affinity progesterone-binding site(s) from porcine liver membranes.[J]. Eur J Biochem, 2010, 239(3): 726-731.
[143] YANG X H, XU Z H, XUE H W. Arabidopsis Membrane Steroid Binding Protein 1 Is Involved in Inhibition of Cell Elongation[J/OL]. The Plant Cell, 2005, 17(1): 116-131.
[144] PREUSS M L, SERNA J, FALBEL T G, et al. The Arabidopsis Rab GTPase RabA4b Localizes to the Tips of Growing Root Hair Cells[W][J/OL]. The Plant Cell, 2004, 16(6): 1589-1603.
[145] PREUSS M L, SCHMITZ A J, THOLE J M, et al. A role for the RabA4b effector protein PI-4Kβ1 in polarized expansion of root hair cells in Arabidopsis thaliana[J/OL]. Journal of Cell Biology, 2006, 172(7): 991-998.
[146] JONES M A, SHEN J J, FU Y, et al. The Arabidopsis Rop2 GTPase Is a Positive Regulator of Both Root Hair Initiation and Tip Growth[J/OL]. The Plant Cell, 2002, 14(4): 763-776.
[147] DATTA S, PRESCOTT H, DOLAN L. Intensity of a pulse of RSL4 transcription factor synthesis determines Arabidopsis root hair cell size[J/OL]. Nature Plants, 2015, 1(10): 15138.
[148] MENAND B, YI K, JOUANNIC S, et al. An Ancient Mechanism Controls the Development of Cells with a Rooting Function in Land Plants[J/OL]. Science, 2007, 316(5830): 1477-1480.
[149] GENDRE D, BARAL A, DANG X, et al. Rho-of-plant-activated root hair formation requires Arabidopsis YIP4a/b gene function[J/OL]. Development, 2019: dev.168559.
[150] FEIGUELMAN G, FU Y, YALOVSKY S. ROP GTPases Structure-Function and Signaling Pathways[J/OL]. Plant Physiology, 2018, 176(1): 57-79.
[151] REN H, DANG X, YANG Y, et al. SPIKE1 Activates ROP GTPase to Modulate Petal Growth and Shape[J/OL]. Plant Physiology, 2016, 172(1): 358-371.
[152] LEE Y J, SZUMLANSKI A, NIELSEN E, et al. Rho-GTPase–dependent filamentous actin dynamics coordinate vesicle targeting and exocytosis during tip growth[J/OL]. Journal of Cell Biology, 2008, 181(7): 1155-1168.
[153] COLE R A, FOWLER J E. Polarized growth: maintaining focus on the tip[J/OL]. Current Opinion in Plant Biology, 2006, 9(6): 579-588.
[154] HWANG J U, YING G, LEE Y J, et al. Oscillatory ROP GTPase Activation Leads the Oscillatory Polarized Growth of Pollen Tubes[J]. Molecular Biology of the Cell, 2005, 16(11): 5385-5399.
[155] GU Y, FU Y, DOWD P, et al. A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes[J/OL]. Journal of Cell Biology, 2005, 169(1): 127-138.
[156] WANG X, BI S, WANG L, et al. GLABRA2 Regulates Actin Bundling Protein VILLIN1 in Root Hair Growth in Response to Osmotic Stress[J/OL]. Plant Physiology, 2020, 184(1): 176-193.
[157] GELDNER N, DÉNERVAUD-TENDON V, HYMAN D L, et al. Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set[J/OL]. The Plant Journal, 2009, 59(1): 169-178.
[158] DENNINGER P, REICHELT A, SCHMIDT V A F, et al. Distinct RopGEFs Successively Drive Polarization and Outgrowth of Root Hairs[J/OL]. Current Biology, 2019, 29(11): 1854-1865.e5.
[159] ZHANG H, ZHANG F, YU Y, et al. A Comprehensive Online Database for Exploring ∼20,000 Public Arabidopsis RNA-Seq Libraries[J/OL]. Molecular Plant, 2020, 13(9): 1231-1233.
[160] ZHU S, ESTÉVEZ J M, LIAO H, et al. The RALF1–FERONIA Complex Phosphorylates eIF4E1 to Promote Protein Synthesis and Polar Root Hair Growth[J/OL]. Molecular Plant, 2020, 13(5): 698-716.
[161] TARTAGLIO V, RENNIE E A, CAHOON R, et al. Glycosylation of inositol phosphorylceramide sphingolipids is required for normal growth and reproduction in Arabidopsis[J/OL]. The Plant Journal, 2017, 89(2): 278-290.
[162] ALI U, LI H, WANG X, et al. Emerging Roles of Sphingolipid Signaling in Plant Response to Biotic and Abiotic Stresses[J/OL]. Molecular Plant, 2018, 11(11): 1328-1343.
[163] LIU N J, WANG N, BAO J J, et al. Lipidomic Analysis Reveals the Importance of GIPCs in Arabidopsis Leaf Extracellular Vesicles[J/OL]. Molecular Plant, 2020, 13(10): 1523-1532.
[164] GRONNIER J, GERMAIN V, GOUGUET P, et al. GIPC: Glycosyl Inositol Phospho Ceramides, the major sphingolipids on earth[J/OL]. Plant Signaling & Behavior, 2016, 11(4): e1152438.
[165] CACAS J L, BURÉ C, GROSJEAN K, et al. Revisiting Plant Plasma Membrane Lipids in Tobacco: A Focus on Sphingolipids[J/OL]. Plant Physiology, 2016, 170(1): 367-384.
[166] LI C, YEH F L, CHEUNG A Y, et al. Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis[J/OL]. eLife, 2015, 4: e06587.
[167] PAN X, FANG L, LIU J, et al. Auxin-induced signaling protein nanoclustering contributes to cell polarity formation[J/OL]. Nature Communications, 2020, 11(1): 3914.
[168] LENARČIČ T, ALBERT I, BÖHM H, et al. Eudicot plant-specific sphingolipids determine host selectivity of microbial NLP cytolysins[J/OL]. Science, 2017, 358(6369): 1431-1434. ¬¬¬¬
[169] JIANG Z, ZHOU X, TAO M, et al. Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx[J/OL]. Nature, 2019, 572(7769): 341-346.
[170] GE S X, SON E W, YAO R. iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data[J/OL]. BMC Bioinformatics, 2018, 19(1): 534.
[171] ZHU C, GAN L, SHEN Z, et al. Interactions between jasmonates and ethylene in the regulation of root hair development in Arabidopsis[J/OL]. Journal of Experimental Botany, 2006, 57(6): 1299-1308
修改评论