中文版 | English
题名

二硫化钼材料用于去除水中重金属铅的效率与机理研究

其他题名
STUDY ON THE REMOVAL EFFICIENCY AND MECHANISMS OF LEAD IONS FROM WATER BY MOLYBDENUM DISULFIDE
姓名
姓名拼音
WANG Kunkun
学号
11930292
学位类型
硕士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
王钟颍
导师单位
环境科学与工程学院
论文答辩日期
2022-11-25
论文提交日期
2022-12-16
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

随着工业与城市化的蓬勃发展,人们对水资源的消耗也日益增长,而与此同时,水资源的污染问题也愈发突出。重金属铅(Pb)是一种在世界范围内广泛存在的蓄积性毒物,水环境中的铅会对人体健康和生态环境造成巨大威胁。吸附是目前工业除铅的常用处理方案。相较于传统材料来说,二硫化钼等二维材料对铅离子(Pb(II))的亲和性更高,因此寻求或制备高效的二维纳米材料用于铅离子的去除成为备受关注的问题。但是,国内外对于二维材料去除重金属的研究大多只关注吸附剂的短期添加对体系中铅离子含量的影响,而忽略在此过程中吸附剂的稳定性及是否会对水质造成二次污染。此外,对于络合态铅,其在工业废水中更为常见、也更难以去除,但针对该形态的处理工艺并没有得到足够重视和研发。因此,本文使用二硫化钼(MoS2)作为Pb(II)的吸附剂和过氧化氢(H2O2)的活化剂,实现不同水环境体系中游离和络合态铅的高效去除。

对于出水水质要求高的生活饮用水,研究采用超声辅助的电化学剥离法,制备鸟苷酸(GMP)负载的2H相电化学剥离的二硫化钼纳米片(E-MoS2)。通过批量实验测试了纳米片的吸附性能(吸附容量和吸附动力学)以及环境因子(pH和共存离子)的影响。实验结果表明,E-MoS2能迅速去除体系中的Pb(II),处理效果不受钙、镁两种天然水体常见的二价离子影响,且吸附容量相比于MoS2粉末来说得到了显著的提升。为了探究MoS2二维材料的稳定性,研究选取了水热制备和化学剥离的二硫化钼纳米材料作为对比,通过稳定性实验和15天吸附容量对比实验来测试材料的氧化速率。实验证明,在保证优良吸附性能的同时,E-MoS2还展现出了极高的化学稳定性,这对于饮用水处理来说有极大的优势。研究借助XRDXPSSEM-EDS等分析手段对实验中的二硫化钼材料进行了形貌、结构和性质表征,既检验和评估了材料的吸附性能及机理,也对铅和材料在体系中的化学转化过程进行了较为深入的探究。研究表明,吸附是E-MoS2除铅的唯一机理;此外,其极高的化学稳定性可能源于GMPE-MoS2表面分子间的相互作用和E-MoS2材料晶体的完整性。

对于工业废水中难以通过吸附去除的络合态铅,研究采用产量大、价格低廉的二硫化钼粉末,设计了MoS2粉末/H2O2体系。通过批量实验以及试剂浓度梯度实验来确定反应的最佳配比和pH,以及最佳条件下体系的反应效率。实验证明,这种体系在较广的pH范围内保持稳定优异的性能。研究通过自由基淬灭实验和电子自旋共振波谱仪(EPR)分析,确定了主要活性自由基为·OHO2∙-。并借助XRDXPSSEM-EDS等测试手段分析了体系的除铅机理。研究提出,体系可能的反应机制是MoS2粉末活化H2O2产生自由基使得Pb-EDTA被氧化降解,从而将络合态铅转化为与MoS2粉末亲和度高的离子态铅,随即一部分被MoS2表面吸附,一部分与MoS2氧化产生的钼酸根离子结合生成钼酸铅析出。

其他摘要

With the rapid development of industry and urbanization, the consumption of water resources is also increasing. At the same time, the problem of water pollution is becoming more and more prominent. Lead (Pb) is a kind of accumulative toxicant that spreads all over the world, which is a great threat to human health and ecological environment. Adsorption is a common treatment method for industrial lead removal. Compared with traditional materials, two-dimensional materials such as molybdenum disulfide (MoS2) have higher affinity for lead ions (Pb(II)), so seeking or preparing efficient two-dimensional nanomaterials for lead ion removal has become a concern. However, most of the studies on the removal of heavy metals by two-dimensional MoS2 materials only focus on the influence of short-term addition of adsorbents on the content of lead ions in the system, while ignoring the stability of adsorbent and whether it will cause secondary pollution to water quality in this process. In addition, complexed lead is more common in industrial wastewater and more difficult to remove, however, the treatment for complexed lead has not received enough attention. Therefore, MoS2 was used as an adsorbent of Pb(II) and an activator of hydrogen peroxide (H2O2) to achieve efficient removal of free and complex lead in different water environment systems.

For drinking water with high effluent quality requirements, 2H phase of molybdenum disulfide nanosheets coated with guanylate acid (GMP) (E-MoS2) were prepared by ultrasonically-assisted electrochemical exfoliation. Through batch experiments, the adsorption properties (adsorption capacity and adsorption kinetics) of the nanosheets and the influence of environmental factors (pH and co-existing ions) were tested. The experimental results show that the removal of Pb(II) in the system is quite quickly, and the treatment efficiency is not affected by calcium and magnesium, which are two common divalent ions in natural water. In addition, the adsorption capacity of E-MoS2 is significantly improved compared with bulk MoS2. In order to explore the stability of MoS2 two-dimensional materials, hydrothermal and chemically exfoliated MoS2 nanomaterials were selected for comparison. Through the stability experiment and 15-day adsorption capacity comparison experiment, the oxidation rate of the materials was tested. The experimental results show that, while ensuring excellent adsorption performance, E-MoS2 also shows high chemical stability, which has great advantages for drinking water treatment. By means of XRD, XPS, SEM-EDS and other analysis methods, the morphology, structure and properties of MoS2 in the experiment were characterized, which not only tested and evaluated the adsorption performance of the materials, but also deeply explored the chemical transformation and removal mechanism of lead and materials in the system. The results show that adsorption is the only mechanism existing in the removal of lead by E-MoS2, and its high chemical stability may be due to the defect-free structure of E-MoS2 and the molecular interaction between GMP and the surface of E-MoS2.

Bulk MoS2 /H2O2 system was designed by using bulk MoS2 with high yield and low price to remove the complex lead from industrial wastewater. Batch experiments were carried out to determine the optimal reagent ratio and pH of the reaction, and test the reaction efficiency of the system under the best conditions. The results show that the system has stable and excellent performance in a wide range of pH. The main active radicals in the system were ·OH and O∙-2. XRD, XPS, SEM-EDS and other characterizations were used to analyze the mechanism of lead removal. The possible reaction mechanism of the system is that MoS2 powder activated H2O2 to produce ·OH and O∙-2 which leads Pb-EDTA oxidization, thus transforming the complex lead into ionic lead with high affinity with MoS2 powder. Then part of the ionic lead is adsorbed on the surface of MoS2, and part of it is combined with molybdate ions produced by the oxidation of MoS2 to produce lead molybdate precipitation.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-12
参考文献列表

[1] YUE W, JUN-MING G, YUN H, et al. Dose-Response Relationship between Cumulative Occupational Lead Exposure and the Associated Health Damages: A 20-Year Cohort Study of a Smelter in China [J]. International Journal of Environmental Research & Public Health, 2016, 13(3): 328-337.
[2] KUIJP T, LEI H, CHERRY C R. Health hazards of China's lead-acid battery industry: A review of its market drivers, production processes, and health impacts [J]. Environmental Health, 2013, 12(1): 48-61.
[3] QU C-S, MA Z-W, YANG J, et al. Human Exposure Pathways of Heavy Metals in a Lead-Zinc Mining Area, Jiangsu Province, China [J]. Plos One, 2012, 7(11): 243-251.
[4] 产业调研网. 中国铅产量统计分析(2022 年 1-6 月) [M]. [EB/OL].
[2022-09-08].https://www.cir.cn/R_NengYuanKuangChan/2022-09/ZhongGuoQianChanLiangTongJiFenXi-2022Nian1-6Yue-.html.
[5] XIA H, LIN P, XIJIN X, et al. Elevated Blood Lead Levels of Children in Guiyu, an Electronic Waste Recycling Town in China [J]. Environmental Health Perspectives, 2007, 115(7): 1113-1117.
[6] SATHVIKA T, AMITESH S, KRITI S, et al. Potential Application of Saccharomyces Cerevisiae and Rhizobium Immobilized in Multi Walled Carbon Nanotubes to Adsorb Hexavalent Chromium [J]. Scientific Reports, 2018, 8(1): 9862-9873.
[7] 柴小平, 母清林, 佘运勇,等. 舟山渔场潮间带沉积物重金属形态分布特征及生态风险分析 [J]. 环境污染与防治, 2022, 44(08): 1054-60+67.
[8] 付涛, 梁海含, 牛丽霞,等. 夏季珠江口沉积物-水界面重金属分布特征及其影响因子研究 [J]. 海洋学报, 2022, 44(10): 182-92.
[9] 蒋慧, 谭映宇, 贾青. 中国沿海地区经济增长与海洋环境污染现状分析研究 [J].环境科学与管理, 2015, 40(4): 4.
[10] WANG Z, TU Q, SIM A, et al. Superselective Removal of Lead from Water by Two-Dimensional MoS2 Nanosheets and Layer-Stacked Membranes [J]. Environmental Science & Technology, 2020, 54(19): 12602-12611.
[11] 应波, 叶必雄, 鄂学礼,等. 铅在水环境中的分布及其对健康的影响 [J]. 环境卫生学杂志, 2016, 6(5): 4.
[12] 王英华, 王维平, 车承丹. 配位剂对重金属废水处理的影响及技术对策 [J]. 电镀与环保, 2018, 038(005): 67-70.
[13] 邵红艳, 余海宁, 熊小龙, et al. 改进硫化物沉淀法处理氨羧配位剂电镀镉废水的研究 [J]. 电镀与环保, 2018, 38(1): 3.
[14] 徐发凯, 王一帆. 传统工艺和新兴工艺对重金属废水处理方法的对比研究 [J]. 发展, 2020(10): 81-84.
[15] 吴菊珍, 熊平, 景江,等. 大学化学[M]. 重庆大学出版社, 201607.293.
[16] GRIFFIN S, MARCUS A, SCHULZ T. Calculating the Interindividual Geometric Standard Deviation for Use in the Integrated Exposure Uptake Biokinetic Model for Lead in Children [J]. Environmental Health Perspectives, 1999, 107(6): 481-487.
[17] NATIONAL TOXICOLOGY P. NTP Monograph on Health Effects of Low-Level Lead [J]. NTP Monograph, 2012, 23(1): 105-148.
[18] 王淑芬. 铅的来源和中毒原因 [J]. 中国医刊, 2000, 35(7): 2.
[19] 金银龙. GB5749-2006 生活饮用水卫生标准释义 [M]. GB5749-2006 生活饮用水卫生标准释义, 2007.
[20] ORGANIZATION W H. Guidelines for Drinking-water Quality - World Health Organization [J]. 1993, 18(3): 21-34.
[21] 傅建捷, 王亚韡, 周麟佳,等. 我国典型电子垃圾拆解地持久性有毒化学污染物污染现状 [J]. 化学进展, 2011, 23(8): 14.
[22] 王一宁, 王艳, 王浙锋. 重金属污染土壤植物修复技术发展现状分析 [J]. 节能与环保, 2020(05): 26-27.
[23] 王红. 植物对受损土壤生态系统的修复研究 [J]. 节能与环保, 2020(Z1): 82-83.
[24] 简彦涛, 齐劭乾, 靳潇锐,等. 国内重金属污染土壤修复技术研究进展 [J]. 中国金属通报, 2022(03): 176-178.
[25] 李韵诗, 冯冲凌, 吴晓芙,等. 重金属污染土壤植物修复中的微生物功能研究进展 [J]. 生态学报, 2015, 35(20): 10.
[26] MAHMUDOV R, HUANG C P. Perchlorate Removal by Activated Carbon Adsorption [J]. Separation and Purification Technology, 2010, 70(3): 329-337.
[27] FU W, HUANG Z. Magnetic Dithiocarbamate Functionalized Reduced Graphene Oxide for the Removal of Cu(II), Cd(II), Pb(II), and Hg(II) Ions from Aqueous Solution: Synthesis, Adsorption, and Regeneration [J]. Chemosphere, 2018, 209(15): 449-456.
[28] YU C, SHAO Z, HOU H. A Functionalized Metal-Organic Framework Decorated with O-groups Showing Excellent Performance for Lead(II) Removal from Aqueous Solution [J]. Chemical Science, 2017, 8(11): 7611-7619.
[29] LI Z, WANG L, MENG J, et al. Zeolite-Supported Nanoscale Zero-Valent Iron: NewFindings on Simultaneous Adsorption of Cd(II), Pb(II), and As(III) in Aqueous Solution and Soil [J]. Journal of Hazardous Materials, 2018, 344(64): 1-11.
[30] YU Y, ZHANG G, YE L. Preparation and Adsorption Mechanism of Polyvinyl Alcohol/Graphene Oxide﹕Odium Alginate Nanocomposite Hydrogel with High Pb(II) Adsorption Capacity [J]. Journal of Applied Polymer Science, 2019, 136(14): 232-248.
[31] SASHKINA K A, POLUKHIN A V, LABKO V S, et al. Fe-Silicalites as Heterogeneous Fenton-type Catalysts for Radiocobalt Removal from EDTA Chelates [J]. Applied Catalysis B-Environmental, 2016, 185(83): 353-361.
[32] DONG L, HOU L A, WANG Z, et al. A New Function of Spent Activated Carbon in BAC Process: Removing Heavy Metals by Ion Exchange Mechanism [J]. Journal of Hazardous Materials, 2018, 359(2): 76-84.
[33] 陈文溪,郭一令.络合电镀废水处理的研究[J].环境保护与循环经济, 2017, 37(10): 32-35.
[34] LAN S, XIONG Y, TIAN S, et al. Enhanced Self-Catalytic Degradation of CuEDTA in the Presence of H2O2 /UV: Evidence and Importance of Cu-Peroxide as a Photo-Active Intermediate [J]. Applied Catalysis B Environmental, 2016, 183(9): 371-376.
[35] JIRAROJ D, UNOB F, HAGEGE A. Degradation of Pb-EDTA Complex by a H2O2 /UV Process [J]. Water Research, 2006, 40(1): 107-112.
[36] FU F, WANG Q, TANG B. Fenton and Fenton-like Reaction Followed by HydroxidePrecipitation in the Removal of Ni(II) from NiEDTA Wastewater: A Comparative Study [J]. Chemical Engineering Journal, 2009, 155(3): 769-774.
[37] MALINEN L K, KOIVULA R, HARJULA R. Removal of Radiocobalt from EDTA-Complexes Using Oxidation and Selective Ion Exchange [J]. Water Science & Technology, 2009, 60(4): 1097-1101.
[38] LEE S S, BAI H, LIU Z, et al. Green Approach for Photocatalytic Cu(II)-EDTA Degradation over TiO2 : Toward Environmental Sustainability [J]. Environmental Science & Technology, 2015, 49(4): 2541-2548.
[39] XU, ZHAO, LIBAO, et al. Photoelectrocatalytic Oxidation of Cu(II)–EDTA at the TiO2 Electrode and Simultaneous Recovery of Cu(II) by Electrodeposition [J]. Environmental Science & Technology, 2013, 47(9): 4480-4488.
[40] JO G, CHOE M, LEE S, et al. The Application of Graphene as Electrodes in Electrical and Optical Devices [J]. Nanotechnology, 2012, 23(11): 1343-1351.
[41] TAN C, CAO X, WU X-J, et al. Recent Advances in Ultrathin Two-Dimensional Nanomaterials [J]. Chemical Reviews, 2017, 117(9): 6225-6331.
[42] DING Q, SONG B, XU P, et al. Efficient Electrocatalytic and Photoelectrochemical Hydrogen Generation Using MoS2 and Related Compounds [J]. Chem, 2016, 1(5): 699-726.
[43] PAZ W S, PALACIOS J J. A Theoretical Study of the Electrical Contact between Metallic and Semiconducting Phases in Monolayer MoS2 [J]. 2d Materials, 2017, 4(1): 283-294.
[44] MARIO E D A, LIU C, EZUGWU C I, et al. Molybdenum Disulfide/MontmorilloniteComposite as a Highly Efficient Adsorbent for Mercury Removal from Wastewater [J]. Applied Clay Science, 2020, 184(7): 673-685.
[45] 李晶, 王宇晴, 刘东新,等. 二硫化钼性能及应用研究进展 [J]. 粉末冶金技术,2021, 39(5): 471-8.
[46] SINGH A K, KUMAR P, LATE D J, et al. 2D Layered Transition Metal Dichalcogenides (MoS2): Synthesis, Applications and Theoretical Aspects [J]. Applied Materials Today, 2018, 13(4): 242-257.
[47] CHEN Y, HUANG S, JI X, et al. Tuning Electronic Structure of Single Layer MoS2 through Defect and Interface Engineering [J]. ACS Nano, 2018, 12(3): 2569-2579.
[48] LI G, CHEN Z, LI Y, et al. Engineering Substrate Interaction To Improve HydrogenEvolution Catalysis of Monolayer MoS2 Films beyond Pt [J]. ACS Nano, 2020, 14(2): 1707-1714.
[49] GUO Z, LI W, HE Y, et al. Effect of Cd Source on Photocatalytic H2 Evolution overCdS/MoS2 Composites Synthesised via a One-Pot Hydrothermal Strategy [J]. AppliedSurface Science, 2020, 512(3): 125-132.
[50] LI Z, FAN R, HU Z, et al. Ethanol Introduced Synthesis of Ultrastable 1T-MoS2 forRemoval of Cr(VI) [J]. Journal of Hazardous Materials, 2020, 394(6): 324-338.
[51] PAZHAMALAI P, KRISHNAMOORTHY K, MANOHARAN S, et al. High Energy Symmetric Supercapacitor Based on Mechanically Delaminated Few-Layered MoS2 Sheets in Organic Electrolyte [J]. Journal of Alloys and Compounds, 2019, 771(9): 803-809.
[52] RAY S J. First-Principles Study of MoS2 , Phosphorene and Graphene Based Single Electron Transistor for Gas Sensing Applications [J]. Sensors and Actuators B-Chemical, 2016, 222(4): 492-498.
[53] JORGE, A., GUZMAN. Carbon Monoxide Poisoning [J]. Critical Care Clinics, 2012,28(4): 537-548.
[54] DU R, WU W. Adsorption of Gas Molecule on Rh, Ru Doped Monolayer MoS2 for Gas Sensing Applications: A DFT Study [J]. Chemical Physics Letters, 2022, 789(3): 872-887.
[55] ZHANG Z, ZHAO Q, HUANG M, et al. Adsorption of Hazardous Gases in Nuclear Islands on Monolayer MoS 2 Sheet [J]. Adsorption-Journal of the International Adsorption Society, 2019, 25(2): 159-171.
[56] LINGHU Y, WU C. Gas Molecules on Defective and Nonmetal-Doped MoS2 Monolayers [J]. Journal of Physical Chemistry C, 2020, 124(2): 1511-1522.
[57] ZHANG Y, NIU J, XU J. Fe(II)-Promoted Activation of Peroxymonosulfate by Molybdenum Disulfide for Effective Degradation of Acetaminophen [J]. Chemical Engineering Journal, 2020, 381(5): 732-749.
[58] LIANG H, HUA P, ZHOU Y, et al. Fabrication of Cu/rGO/MoS2 Nanohybrid with Energetic Visible-Light Response for Degradation of Rhodamine B [J]. Chinese Chemical Letters, 2019, 30(12): 2245-2248.
[59] ZENG Z, YE S, WU H, et al. Research on the Sustainable Efficacy of g-MoS2 Decorated Biochar Nanocomposites for Removing Tetracycline Hydrochloride from Antibiotic-Polluted Aqueous Solution [J]. Science of the Total Environment, 2019, 648(9): 206-217.
[60] ZHAO Y, WU R, YU H, et al. Magnetic Solid-Phase Extraction of Sulfonamide Antibiotics in Water and Animal-Derived Food Samples Using Core-Shell Magnetite and Molybdenum Disulfide Nanocomposite Adsorbent [J]. Journal of Chromatography A, 2020, 10(4): 1783-1795.
[61] WANG H, LI X, GE Q, et al. A Multifunctional Fe2O3@MoS2@SDS Z-scheme Nanocomposite: NIR Enhanced Bacterial Inactivation, Degradation Antibiotics and Inhibiting ARGs Dissemination [J]. Colloids and Surfaces B, Biointerfaces, 2022, 219(11): 2833-2841.
[62] KANG J, JIN C, LI Z, et al. Dual Z-scheme MoS2/g-C3N4/Bi24O31Cl10 Ternary Heterojunction Photocatalysts for Enhanced Visible-Light Photodegradation of Antibiotic [J]. Journal of Alloys and Compounds, 2020, 72(10): 813-825.
[63]LIU N, HUANG W, TANG M, et al. In-Situ Fabrication of Needle-Shaped MIL-53(Fe) with 1T-MoS2 and Study on Its Enhanced Photocatalytic Mechanism of Ibuprofen [J]. Chemical Engineering Journal, 2019, 39(4): 254-264.
[64] ZHOU H, LAI L, WAN Y, et al. Molybdenum Disulfide (MoS2): A Versatile Activator of both Peroxymonosulfate and Persulfate for the Degradation of Carbamazepine [J]. Chemical Engineering Journal, 2020, 38(4): 762-771.
[65] ZENG L, LI X, FAN S, et al. Insight into MoS2 Synthesis with Biophotoelectrochemical Engineering and Applications in Levofloxacin Elimination [J]. ACS Applied Energy Materials, 2018, 1(8): 3752-3762.
[66] OTHMAN N H, FUZIL N S, ALIAS N H, et al. Fabrication of MoS2-rGO and MoS2 -ZIF-8 Membranes Supported on Flat Alumina Substrate for Effective Oil Removal [J].Emergent Materials, 2022, 5(4): 1169-1182.
[67] DENG X, LIANG X, NG S-P, et al. Adsorption of Formaldehyde on Transition Metal Doped Monolayer MoS2 : A DFT study [J]. Applied Surface Science, 2019, 48(4): 1244-1252.
[68] ZOU W, ZHAO C, ZHANG X, et al. Mitigation Effects and Associated Mechanisms of Environmentally Relevant Thiols on the Phytotoxicity of Molybdenum Disulfide Nanosheets [J]. Environmental Science & Technology, 2022, 23(4): 532-537.
[69] WANG Z Y, SIM A, URBAN J J, et al. Removal and Recovery of Heavy Metal Ions by Two-dimensional MoS2 Nanosheets: Performance and Mechanisms [J]. Environmental Science & Technology, 2018, 52(17): 9741-9748.
[70] KHAN Z H, GAO M, QIU W, et al. Properties and Adsorption Mechanism of Magnetic Biochar Modified with Molybdenum Disulfide for Cadmium in Aqueous Solution [J]. Chemosphere, 2020, 25(5): 128-142.
[71] ZHANG X, LIU Y. Nanomaterials for Radioactive Wastewater Decontamination [J]. Environmental Science-Nano, 2020, 7(4): 1008-1040.
[72] ZHAO Q, ZHANG Z, OUYANG X. Adsorption of Radionuclides on the Monolayer MoS2 [J]. Materials Research Express, 2018, 5(4): 873-881.
[73] ZHANG Z, ZHAO Q, HUANG M, et al. Chemisorption of Metallic Radionuclides on a Monolayer MoS2 Nanosheet [J]. Nanoscale Advances, 2019, 1(1): 114-121.
[74] WANG J, YANG S, CHENG G, et al. The Adsorption of Europium and Uranium on the Sodium Dodecyl Sulfate Modified Molybdenum Disulfide Composites [J]. Journal of Chemical and Engineering Data, 2020, 65(4): 2178-2185.
[75] WU M-H, LI L, XUE Y-C, et al. Fabrication of Ternary GO/g-C3N4/MoS2 Flower-like Heterojunctions with Enhanced Photocatalytic Activity for Water Remediation [J]. Applied Catalysis B-Environmental, 2018, 22(8): 103-112.
[76] ZHANG Z, LIU C, DONG Z, et al. Synthesis of Flower-like MoS2/g-C3N4 Nanosheet Heterojunctions with Enhanced Photocatalytic Reduction Activity of Uranium(VI) [J]. Applied Surface Science, 2020, 5(20): 637-645.
[77] KHAN Z H, GAO M, QIU W, et al. Efficient As(III) Removal by Novel MoS2-Impregnated Fe-Oxide-Biochar Composites: Characterization and Mechanisms [J]. ACS Omega, 2020, 5(22): 13224-13235.
[78] ZHANG L, HE X, ZHOU Q, et al. Fabrication of 1T-MoS2 Nanosheets and the High-Efficiency Removal of Toxic Metals in Aquatic Systems: Performance and Mechanisms [J]. Chemical Engineering Journal, 2020, 38(6): 823-842.
[79] MAGGIE A. Water and Sanitation in Developing Countries: Including Health in the Equation. Montgomery, Menachem Elimelech [J]. Environmental Science andTechnology, 2007, 4(1): 17-24.
[80] TONG S, DENG H, WANG L, et al. Multi-Functional Nanohybrid of Ultrathin Molybdenum Disulfide Nanosheets Decorated with Cerium Oxide Nanoparticles for Preferential Uptake of Lead (II) Ions [J]. Chemical Engineering Journal, 2018, 33(5): 22-31.
[81] WANG Y, NI J, CHEN P, et al. First-Principles Study of X(O, Se, Te)-doped Monolayer MoS2 for Hg-0 Adsorption [J]. Physica E-Low-Dimensional Systems & Nanostructures, 2021, 127(5): 3837-3844.
[82] KUMAR N, FOSSO-KANKEU E, RAY S S. Achieving Controllable MoS2 Nanostructures with Increased Interlayer Spacing for Efficient Removal of Pb(II) from Aquatic Systems [J]. ACS Applied Materials & Interfaces, 2019, 11(21): 19141-19155.
[83] ZHU H, TAN X, TAN L, et al. Biochar Derived from Sawdust Embedded with Molybdenum Disulfide for Highly Selective Removal of Pb2+ [J]. ACS Applied Nano Materials, 2018, 1(6): 2689-2698.
[84] LUO J, FU K, SUN M, et al. Phase-Mediated Heavy Metal Adsorption from Aqueous Solutions Using Two-Dimensional Layered MoS2 [J]. ACS Applied Materials & Interfaces, 2019, 11(42): 38789-38797.
[85] HWANG J-H, ISLAM M A, CHOI H, et al. Improving Electrochemical Pb2+ Detection Using a Vertically Aligned 2D MoS2 Nanofilm [J]. Analytical Chemistry, 2019, 91(18): 11770-11777.
[86] LIU H, LIU C, XIANG K, et al. Disordered MoS2 Nanosheets with Widened Interlayer Spacing for Elemental Mercury Adsorption from Nonferrous Smelting Flue Gas [J]. Acs Es&T Engineering, 2021, 1(8): 1258-1266.
[87] NAIR J S A, SAISREE S, SANDHYA K Y. Ultra-Rapid Removal of Pb(II) Ions by a Nano-MoS2 Decorated Graphene Aided by the Unique Combination of Affinity and Electrochemistry [J]. Advanced Sustainable Systems, 2022, 6(7): 913-922.
[88] WANG J, ZHANG W, YUE X, et al. One-Pot Synthesis of Multifunctional Magnetic Ferrite-MoS2 -Carbon Dot Nanohybrid Adsorbent for Efficient Pb(II) Removal [J]. Journal of Materials Chemistry A, 2016, 4(10): 3893-3900.
[89] AGHAGOLI M J, SHEMIRANI F. Hybrid Nanosheets Composed of Molybdenum Disulfide and Reduced Graphene Oxide for Enhanced Solid Phase Extraction of Pb(II) and Ni(II) [J]. Microchimica Acta, 2017, 184(1): 237-244.
[90] YUAN W, KUANG J, YU M, et al. Facile Preparation of MoS2@Kaolin Composite by One-Step Hydrothermal Method for Efficient Removal of Pb(II) [J]. Journal of Hazardous Materials, 2021, 405(2): 220-228.
[91] WANG Y, XU H, ZHAO X, et al. Alkynyl Functionalized MoS2 Mesoporous Materials with Superb Adsorptivity for Heavy Metal Ions [J]. Journal of Hazardous Materials, 2022, 424(9): 328-346.
[92] CARPER J. The CRC Handbook of Chemistry and Physics [J]. Library Journal, 1999, 124(10): 192-207.
[93] NIE K, QU X, GAO D, et al. Engineering Phase Stability of Semimetallic MoS2 Monolayers for Sustainable Electrocatalytic Hydrogen Production [J]. Acs Applied Materials & Interfaces, 2022, 14(17): 19847-19856.
[94] RAHMAN M H, CHOWDHURY E H, HONG S. High Temperature Oxidation of Monolayer MoS2 and Its Effect on Mechanical Properties: A ReaxFF Molecular Dynamics Study [J]. Surfaces and Interfaces, 2021, 26(13): 147-275.
[95] YAMAMOTO M, EINSTEIN T L, FUHRER M S, et al. Anisotropic Etching of Atomically Thin MoS2 [J]. Journal of Physical Chemistry C, 2013, 117(48): 25643-25649.
[96] QU X, ALVAREZ P, LI Q. Photochemical Transformation of Carboxylated Multiwalled Carbon Nanotubes: Role of Reactive Oxygen Species [J]. Environmental Science & Technology, 2013, 47(24): 14080-14088.
[97] YANG S, TIAN H, HILL M R, et al. Effect and Regulation Mechanism of Oxidation Degrees on the O-MoS2 Structure and Separation Performance of Nanofiltration Membrane [J]. Journal of Membrane Science, 2021, 635(11): 3649-3655.
[98] YANG H I, CHOI W. Capacitance-Voltage Measurements of Monolayer MoS2 Metal-Oxide-Semiconductor Capacitors [J]. Microelectronic Engineering, 2021, 238(2): 656-660.
[99] ZOU W, ZHOU Q, ZHANG X, et al. Dissolved Oxygen and Visible Light Irradiation Drive the Structural Alterations and Phytotoxicity Mitigation of Single-Layer Molybdenum Disulfide [J]. Environmental Science & Technology, 2019, 53(13): 7759-7769.
[100]ZHOU Y, LIU B, YANG R, et al. Filling in the Gaps between Nanozymes and Enzymes: Challenges and Opportunities [J]. Bioconjugate Chemistry, 2017, 28(12): 2903-2909.
[101]HUANG Y, REN J, QU X. Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications [J]. Chemical Reviews, 2019, 119(6): 4357-4412.
[102]ZHU X, WANG Z, GAO M, et al. AgPt/MoS2 Hybrid as Electrochemical Sensor for Detecting H2O2 Release from Living Cells [J]. New Journal of Chemistry, 2022, 46(31): 15032-15041.
[103]REHMAN F, SAYED M, KHAN J A, et al. Degradation of Crystal Violet Dye by Fenton and Photo-Fenton Oxidation Processes [J]. Zeitschrift Fur Physikalische Chemie-International Journal of Research in Physical Chemistry & Chemical Physics, 2018, 232(12): 1771-1786.
[104]DOU X, ZHANG Q, SHAH S N A, et al. MoS2-Quantum Dot Triggered Reactive Oxygen Species Generation and Depletion: Responsible for Enhanced Chemiluminescence [J]. Chemical Science, 2019, 10(2): 497-500.
[105]KONG L, FANG G, KONG Y, et al. Cu2O@beta-Cyclodextrin as a Synergistic Catalyst for Hydroxyl Radical Generation and Molecular Recognitive Destruction of Aromatic Pollutants at Neutral pH [J]. Journal of Hazardous Materials, 2018, 35(7): 109-118.
[106]LI Q, HU B, YANG Q, et al. Interaction Mechanism between Multi-Layered MoS2 and H2O2 for Self-Generation of Reactive Oxygen Species [J]. Environmental Research, 2020, 19(1): 761-778.
[107]LEI D, SHAN L, YANG L, et al. Spontaneous Exfoliation and Tailoring of MoS2 in Mixed Solvents [J]. Chemical Communications, 2014, 50(100): 15936-15939.
[108]SHAKYA J, KUMAR S, MOHANTY T. Role of Oxygen Adsorption in Modification of Optical and Surface Electronic Properties of MoS2 [J]. Journal of Applied Physics, 2018, 123(16): 573-569.
[109]GUARDIA L, PAREDES J I, MUNUERA J M, et al. Chemically Exfoliated MoS2 Nanosheets as an Efficient Catalyst for Reduction Reactions in the Aqueous Phase [J]. ACS Applied Materials & Interfaces, 2014, 6(23): 21702-21710.
[110]WANG Z, VON DEM BUSSCHE A, QIU Y, et al. Chemical Dissolution Pathways of MoS2 Nanosheets in Biological and Environmental Media [J]. Environmental Science& Technology, 2016, 50(13): 7208-7217.
[111]SANTOSH K C, LONGO R C, WALLACE R M, et al. Surface Oxidation Energetics and Kinetics on MoS2 Monolayer [J]. Journal of Applied Physics, 2015, 117(13): 270-283.
[112]LUO H, CHENG Y, ZENG Y, et al. Enhanced Decomposition of H2O2 by Molybdenum Disulfide in a Fenton-like Process for Abatement of Organic Micropollutants [J]. Science of the Total Environment, 2020, 73(2): 921-933.
[113]REN Y, LIN L, MA J, et al. Sulfate Radicals Induced from Peroxymonosulfate by Magnetic Ferrospinel MFe2O4 (M = Co, Cu, Mn, and Zn) as Heterogeneous Catalysts in the Water [J]. Applied Catalysis B-Environmental, 2015, 16(5): 572-578.
[114]LI X, HUANG X, XI S, et al. Single Cobalt Atoms Anchored on Porous N-Doped Graphene with Dual Reaction Sites for Efficient Fenton-like Catalysis [J]. Journal of the American Chemical Society, 2018, 140(39): 12469-12475.
[115]CHEN Y, ZHANG G, JI Q, et al. Triggering of Low-Valence Molybdenum in Multiphasic MoS2 for Effective Reactive Oxygen Species Output in Catalytic Fenton-like Reactions [J]. ACS Applied Materials & Interfaces, 2019, 11(30): 26781-26788.
[116]JAYABAL S, WU J, CHEN J, et al. Metallic 1T-MoS2 Nanosheets and their Composite Materials: Preparation, Properties and Emerging Applications [J]. Materials Today Energy, 2018, 10(2): 64-79.
[117]ZHOU J, JI X, ZHOU X, et al. Three-Dimensional g-C3N4 /MgO Composites as a High-Performance Adsorbent for Removal of Pb(II) from Aqueous Solution [J]. Separation Science and Technology, 2019, 54(17): 2817-2829.
[118]EL GARAH M, BERTOLAZZI S, IPPOLITO S, et al. MoS2 Nanosheets via Electrochemical Lithium-Ion Intercalation under Ambient Conditions [J]. Flatchem, 2018, 9(2): 33-39.
[119]SALINI A N J, RAMACHANDRAN A, SADASIVAKURUP S, et al. Versatile MoS2 Hollow Nanoroses for a Quick-Witted Removal of Hg(II), Pb(II) and Ag(I) from Water and the Mechanism: Affinity or Electrochemistry? [J]. Applied Materials Today, 2020, 20(3): 698-706.
[120]LIU B, HAN Q, LI L, et al. Synergistic Effect of Metal Cations and Visible Light on 2D MoS2 Nanosheet Aggregation [J]. Environmental Science & Technology, 2021, 55(24): 16379-16389.
[121]MAK K F, LEE C, HONE J, et al. Atomically Thin MoS2 : A New Direct-Gap Semiconductor [J]. Physical Review Letters, 2010, 105(13): 2-5.
[122]SANDOVAL S J, YANG D, FRINDT R F, et al. Raman-Study and Lattice-Dynamics of Single Molecular Layers of MoS2 [J]. Physical Review B, 1991, 44(8): 3955-3962.
[123]KAPPERA R, VOIRY D, YALCIN S E, et al. Phase-Engineered Low-Resistance Contacts for Ultrathin MoS2 Transistors [J]. Nature Materials, 2014, 13(4): 1128-1134.
[124]WANG H, LU Z, XU S, et al. Electrochemical Tuning of Vertically Aligned MoS2 Nanofilms and its Application in Improving Hydrogen Evolution Reaction [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(49): 19701-19706.
[125]JOENSEN P, CROZIER E D, ALBERDING N, et al. A Study of Single-Layer and Restacked MoS2 by X-ray-Diffraction and X-ray Absorption-Spectroscopy [J]. Journal of Physics C-Solid State Physics, 1987, 20(26): 4043-4053.
[126]LIU Q, LI X, HE Q, et al. Gram-Scale Aqueous Synthesis of Stable Few-Layered 1T-MoS2 : Applications for Visible-Light-Driven Photocatalytic Hydrogen Evolution [J]. Small, 2015, 11(41): 5556-5564.
[127]ZHANG D, ZHANG P, YI J, et al. XRD Simulation Study of Doped LiFePO4 [J]. Journal of Alloys and Compounds, 2011, 509(4): 1206-1210.
[128]GARCIA-DALI S, PAREDES J I, MUNUERA J M, et al. Aqueous Cathodic Exfoliation Strategy toward Solution-Processable and Phase-Preserved MoS2 Nanosheets for Energy Storage and Catalytic Applications [J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36991-37003.
[129]ISOKISE E M, ABDULLAH A H, PING T Y. Sequestration of Pb(II) from Aqueous Environment by Palm Kernel Shell Activated Carbon: Isotherm and Kinetic Analyses [J]. Pertanika Journal of Science and Technology, 2021, 29(3): 1517-1534.
[130]BEYAN S M, AMBIO T A, SUNDRAMURTHY V P, et al. Adsorption Phenomenon for Removal of Pb(II) via Teff Straw based Activated Carbon Prepared by Microwave-Assisted Pyrolysis: Process Modelling, Statistical Optimisation, Isotherm, Kinetics, and Thermodynamic Studies [J]. International Journal of Environmental Analytical Chemistry, 2022, 27(6): 247-262.
[131]PAM A A, HIR Z A M, ABDULLAH A H, et al. Pb(II) Removal in Water via Adsorption onto Deep Eutectic Solvent Fabricated Activated Carbon [J]. Applied Water Science, 2021, 11(6): 673-681.
[132]WANG Z, XU J, YELLEZUOME D, et al. Effects of Cotton Straw-Derived Biochar Under Different Pyrolysis Conditions on Pb(II) Adsorption Properties in Aqueous Solutions [J]. Journal of Analytical and Applied Pyrolysis, 2021, 157(2): 731-739.
[133]CHEN C, QIU M. High Efficiency Removal of Pb(II) in Aqueous Solution by a Biochar-Supported Nanoscale Ferrous Sulfide Composite [J]. RSC Advances, 2021, 11(2): 953-959.
[134]TAN Y, WAN X, ZHOU T, et al. Novel Zn-Fe Engineered Kiwi Branch Biochar for the Removal of Pb(II) from Aqueous Solution [J]. Journal of Hazardous Materials, 2022, 424(7): 582-587.
[135]LEE T W, CHEN C C, CHEN C. Chemical Stability and Transformation of Molybdenum Disulfide Nanosheets in Environmental Media [J]. Environmental Science and Technology, 2019, 53(11): 6282-6291.
[136]WANG Z, BUSSCHE A V D, QIU Y, et al. Chemical Dissolution Pathways of MoS2 Nanosheets in Biological and Environmental Media [J]. Environmental Science & Technology, 2016, 50(13): 7208-7217.
[137]LIN Y C, DUMCENCON D O, HUANG Y S, et al. Atomic Mechanism of the Semiconducting-to-Metallic Phase Transition in Single-Layered MoS2 [J]. Nature Nanotechnology, 2014, 9(5): 391-396.
[138]WANG Z, MI B. Environmental Applications of 2D Molybdenum Disulfide (MoS2 ) Nanosheets [J]. Environmental Science & Technology, 2017, 51(15): 8229-8244.
[139]PARZINGER E, MILLER B, BLASCHKE B, et al. Photocatalytic Stability of Single- and Few-Layer MoS2 [J]. ACS Nano, 2015, 9(11): 11302-11309.
[140]GUSAIN R, KUMAR N, FOSSO-KANKEU E, et al. Efficient Removal of Pb(II) and Cd(II) from Industrial Mine Water by a Hierarchical MoS2/SH-MWCNT Nanocomposite [J]. ACS Omega, 2019, 4(9): 13922-13935.
[141]TAN L, LIU Y, MENG F, et al. 3D Hierarchical Defect-Rich C@MoS2 Nanosheet Arrays Developed on Montmorillonite with Enhanced Performance in Pb(II) Removal [J]. Environmental Science-Nano, 2020, 7(10): 3088-3099.
[142]ARULMOZHI K T, MYTHILI N. Studies on the Chemical Synthesis and Characterization of Lead Oxide Nanoparticles with Different Organic Capping Agents [J]. AIP Advances, 2013, 3(12): 7253-7271.
[143]PHILLIPS C L, REGIER T Z, PEAK D. Aqueous Cu(II)-Organic Complexation Studied in Situ Using Soft X-ray and Vibrational Spectroscopies [J]. Environmental Science & Technology, 2013, 47(24): 14290-14297.
[144]HANNACHI Y. Characterization of the Biosorption of Lead and Cadmium with the Red Alga [J]. Holistic Approach to Environment, 2018, 63(2): 6322-6334.
[145]NEERAJ, KUMAR, ELVIS, et al. Achieving Controllable MoS2 Nanostructures with Increased Interlayer Spacing for Efficient Removal of Pb(II) from Aquatic Systems [J]. ACS Applied Materials & Interfaces, 2019, 81(12): 3632-3638.
[146]GYAWALI G, ADHIKARI R, JOSHI B, et al. Sonochemical Synthesis of Solar-Light-Driven Ag-PbMoO 4 Photocatalyst [J]. Journal of Hazardous Materials, 2013, 263(1): 45-51.

所在学位评定分委会
环境科学与工程学院
国内图书分类号
TB383
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/416948
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
王昆琨. 二硫化钼材料用于去除水中重金属铅的效率与机理研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930292-王昆琨-环境科学与工程(6648KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王昆琨]的文章
百度学术
百度学术中相似的文章
[王昆琨]的文章
必应学术
必应学术中相似的文章
[王昆琨]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。