[1] YUE W, JUN-MING G, YUN H, et al. Dose-Response Relationship between Cumulative Occupational Lead Exposure and the Associated Health Damages: A 20-Year Cohort Study of a Smelter in China [J]. International Journal of Environmental Research & Public Health, 2016, 13(3): 328-337.
[2] KUIJP T, LEI H, CHERRY C R. Health hazards of China's lead-acid battery industry: A review of its market drivers, production processes, and health impacts [J]. Environmental Health, 2013, 12(1): 48-61.
[3] QU C-S, MA Z-W, YANG J, et al. Human Exposure Pathways of Heavy Metals in a Lead-Zinc Mining Area, Jiangsu Province, China [J]. Plos One, 2012, 7(11): 243-251.
[4] 产业调研网. 中国铅产量统计分析(2022 年 1-6 月) [M]. [EB/OL].
[2022-09-08].https://www.cir.cn/R_NengYuanKuangChan/2022-09/ZhongGuoQianChanLiangTongJiFenXi-2022Nian1-6Yue-.html.
[5] XIA H, LIN P, XIJIN X, et al. Elevated Blood Lead Levels of Children in Guiyu, an Electronic Waste Recycling Town in China [J]. Environmental Health Perspectives, 2007, 115(7): 1113-1117.
[6] SATHVIKA T, AMITESH S, KRITI S, et al. Potential Application of Saccharomyces Cerevisiae and Rhizobium Immobilized in Multi Walled Carbon Nanotubes to Adsorb Hexavalent Chromium [J]. Scientific Reports, 2018, 8(1): 9862-9873.
[7] 柴小平, 母清林, 佘运勇,等. 舟山渔场潮间带沉积物重金属形态分布特征及生态风险分析 [J]. 环境污染与防治, 2022, 44(08): 1054-60+67.
[8] 付涛, 梁海含, 牛丽霞,等. 夏季珠江口沉积物-水界面重金属分布特征及其影响因子研究 [J]. 海洋学报, 2022, 44(10): 182-92.
[9] 蒋慧, 谭映宇, 贾青. 中国沿海地区经济增长与海洋环境污染现状分析研究 [J].环境科学与管理, 2015, 40(4): 4.
[10] WANG Z, TU Q, SIM A, et al. Superselective Removal of Lead from Water by Two-Dimensional MoS2 Nanosheets and Layer-Stacked Membranes [J]. Environmental Science & Technology, 2020, 54(19): 12602-12611.
[11] 应波, 叶必雄, 鄂学礼,等. 铅在水环境中的分布及其对健康的影响 [J]. 环境卫生学杂志, 2016, 6(5): 4.
[12] 王英华, 王维平, 车承丹. 配位剂对重金属废水处理的影响及技术对策 [J]. 电镀与环保, 2018, 038(005): 67-70.
[13] 邵红艳, 余海宁, 熊小龙, et al. 改进硫化物沉淀法处理氨羧配位剂电镀镉废水的研究 [J]. 电镀与环保, 2018, 38(1): 3.
[14] 徐发凯, 王一帆. 传统工艺和新兴工艺对重金属废水处理方法的对比研究 [J]. 发展, 2020(10): 81-84.
[15] 吴菊珍, 熊平, 景江,等. 大学化学[M]. 重庆大学出版社, 201607.293.
[16] GRIFFIN S, MARCUS A, SCHULZ T. Calculating the Interindividual Geometric Standard Deviation for Use in the Integrated Exposure Uptake Biokinetic Model for Lead in Children [J]. Environmental Health Perspectives, 1999, 107(6): 481-487.
[17] NATIONAL TOXICOLOGY P. NTP Monograph on Health Effects of Low-Level Lead [J]. NTP Monograph, 2012, 23(1): 105-148.
[18] 王淑芬. 铅的来源和中毒原因 [J]. 中国医刊, 2000, 35(7): 2.
[19] 金银龙. GB5749-2006 生活饮用水卫生标准释义 [M]. GB5749-2006 生活饮用水卫生标准释义, 2007.
[20] ORGANIZATION W H. Guidelines for Drinking-water Quality - World Health Organization [J]. 1993, 18(3): 21-34.
[21] 傅建捷, 王亚韡, 周麟佳,等. 我国典型电子垃圾拆解地持久性有毒化学污染物污染现状 [J]. 化学进展, 2011, 23(8): 14.
[22] 王一宁, 王艳, 王浙锋. 重金属污染土壤植物修复技术发展现状分析 [J]. 节能与环保, 2020(05): 26-27.
[23] 王红. 植物对受损土壤生态系统的修复研究 [J]. 节能与环保, 2020(Z1): 82-83.
[24] 简彦涛, 齐劭乾, 靳潇锐,等. 国内重金属污染土壤修复技术研究进展 [J]. 中国金属通报, 2022(03): 176-178.
[25] 李韵诗, 冯冲凌, 吴晓芙,等. 重金属污染土壤植物修复中的微生物功能研究进展 [J]. 生态学报, 2015, 35(20): 10.
[26] MAHMUDOV R, HUANG C P. Perchlorate Removal by Activated Carbon Adsorption [J]. Separation and Purification Technology, 2010, 70(3): 329-337.
[27] FU W, HUANG Z. Magnetic Dithiocarbamate Functionalized Reduced Graphene Oxide for the Removal of Cu(II), Cd(II), Pb(II), and Hg(II) Ions from Aqueous Solution: Synthesis, Adsorption, and Regeneration [J]. Chemosphere, 2018, 209(15): 449-456.
[28] YU C, SHAO Z, HOU H. A Functionalized Metal-Organic Framework Decorated with O-groups Showing Excellent Performance for Lead(II) Removal from Aqueous Solution [J]. Chemical Science, 2017, 8(11): 7611-7619.
[29] LI Z, WANG L, MENG J, et al. Zeolite-Supported Nanoscale Zero-Valent Iron: NewFindings on Simultaneous Adsorption of Cd(II), Pb(II), and As(III) in Aqueous Solution and Soil [J]. Journal of Hazardous Materials, 2018, 344(64): 1-11.
[30] YU Y, ZHANG G, YE L. Preparation and Adsorption Mechanism of Polyvinyl Alcohol/Graphene Oxide﹕Odium Alginate Nanocomposite Hydrogel with High Pb(II) Adsorption Capacity [J]. Journal of Applied Polymer Science, 2019, 136(14): 232-248.
[31] SASHKINA K A, POLUKHIN A V, LABKO V S, et al. Fe-Silicalites as Heterogeneous Fenton-type Catalysts for Radiocobalt Removal from EDTA Chelates [J]. Applied Catalysis B-Environmental, 2016, 185(83): 353-361.
[32] DONG L, HOU L A, WANG Z, et al. A New Function of Spent Activated Carbon in BAC Process: Removing Heavy Metals by Ion Exchange Mechanism [J]. Journal of Hazardous Materials, 2018, 359(2): 76-84.
[33] 陈文溪,郭一令.络合电镀废水处理的研究[J].环境保护与循环经济, 2017, 37(10): 32-35.
[34] LAN S, XIONG Y, TIAN S, et al. Enhanced Self-Catalytic Degradation of CuEDTA in the Presence of H2O2 /UV: Evidence and Importance of Cu-Peroxide as a Photo-Active Intermediate [J]. Applied Catalysis B Environmental, 2016, 183(9): 371-376.
[35] JIRAROJ D, UNOB F, HAGEGE A. Degradation of Pb-EDTA Complex by a H2O2 /UV Process [J]. Water Research, 2006, 40(1): 107-112.
[36] FU F, WANG Q, TANG B. Fenton and Fenton-like Reaction Followed by HydroxidePrecipitation in the Removal of Ni(II) from NiEDTA Wastewater: A Comparative Study [J]. Chemical Engineering Journal, 2009, 155(3): 769-774.
[37] MALINEN L K, KOIVULA R, HARJULA R. Removal of Radiocobalt from EDTA-Complexes Using Oxidation and Selective Ion Exchange [J]. Water Science & Technology, 2009, 60(4): 1097-1101.
[38] LEE S S, BAI H, LIU Z, et al. Green Approach for Photocatalytic Cu(II)-EDTA Degradation over TiO2 : Toward Environmental Sustainability [J]. Environmental Science & Technology, 2015, 49(4): 2541-2548.
[39] XU, ZHAO, LIBAO, et al. Photoelectrocatalytic Oxidation of Cu(II)–EDTA at the TiO2 Electrode and Simultaneous Recovery of Cu(II) by Electrodeposition [J]. Environmental Science & Technology, 2013, 47(9): 4480-4488.
[40] JO G, CHOE M, LEE S, et al. The Application of Graphene as Electrodes in Electrical and Optical Devices [J]. Nanotechnology, 2012, 23(11): 1343-1351.
[41] TAN C, CAO X, WU X-J, et al. Recent Advances in Ultrathin Two-Dimensional Nanomaterials [J]. Chemical Reviews, 2017, 117(9): 6225-6331.
[42] DING Q, SONG B, XU P, et al. Efficient Electrocatalytic and Photoelectrochemical Hydrogen Generation Using MoS2 and Related Compounds [J]. Chem, 2016, 1(5): 699-726.
[43] PAZ W S, PALACIOS J J. A Theoretical Study of the Electrical Contact between Metallic and Semiconducting Phases in Monolayer MoS2 [J]. 2d Materials, 2017, 4(1): 283-294.
[44] MARIO E D A, LIU C, EZUGWU C I, et al. Molybdenum Disulfide/MontmorilloniteComposite as a Highly Efficient Adsorbent for Mercury Removal from Wastewater [J]. Applied Clay Science, 2020, 184(7): 673-685.
[45] 李晶, 王宇晴, 刘东新,等. 二硫化钼性能及应用研究进展 [J]. 粉末冶金技术,2021, 39(5): 471-8.
[46] SINGH A K, KUMAR P, LATE D J, et al. 2D Layered Transition Metal Dichalcogenides (MoS2): Synthesis, Applications and Theoretical Aspects [J]. Applied Materials Today, 2018, 13(4): 242-257.
[47] CHEN Y, HUANG S, JI X, et al. Tuning Electronic Structure of Single Layer MoS2 through Defect and Interface Engineering [J]. ACS Nano, 2018, 12(3): 2569-2579.
[48] LI G, CHEN Z, LI Y, et al. Engineering Substrate Interaction To Improve HydrogenEvolution Catalysis of Monolayer MoS2 Films beyond Pt [J]. ACS Nano, 2020, 14(2): 1707-1714.
[49] GUO Z, LI W, HE Y, et al. Effect of Cd Source on Photocatalytic H2 Evolution overCdS/MoS2 Composites Synthesised via a One-Pot Hydrothermal Strategy [J]. AppliedSurface Science, 2020, 512(3): 125-132.
[50] LI Z, FAN R, HU Z, et al. Ethanol Introduced Synthesis of Ultrastable 1T-MoS2 forRemoval of Cr(VI) [J]. Journal of Hazardous Materials, 2020, 394(6): 324-338.
[51] PAZHAMALAI P, KRISHNAMOORTHY K, MANOHARAN S, et al. High Energy Symmetric Supercapacitor Based on Mechanically Delaminated Few-Layered MoS2 Sheets in Organic Electrolyte [J]. Journal of Alloys and Compounds, 2019, 771(9): 803-809.
[52] RAY S J. First-Principles Study of MoS2 , Phosphorene and Graphene Based Single Electron Transistor for Gas Sensing Applications [J]. Sensors and Actuators B-Chemical, 2016, 222(4): 492-498.
[53] JORGE, A., GUZMAN. Carbon Monoxide Poisoning [J]. Critical Care Clinics, 2012,28(4): 537-548.
[54] DU R, WU W. Adsorption of Gas Molecule on Rh, Ru Doped Monolayer MoS2 for Gas Sensing Applications: A DFT Study [J]. Chemical Physics Letters, 2022, 789(3): 872-887.
[55] ZHANG Z, ZHAO Q, HUANG M, et al. Adsorption of Hazardous Gases in Nuclear Islands on Monolayer MoS 2 Sheet [J]. Adsorption-Journal of the International Adsorption Society, 2019, 25(2): 159-171.
[56] LINGHU Y, WU C. Gas Molecules on Defective and Nonmetal-Doped MoS2 Monolayers [J]. Journal of Physical Chemistry C, 2020, 124(2): 1511-1522.
[57] ZHANG Y, NIU J, XU J. Fe(II)-Promoted Activation of Peroxymonosulfate by Molybdenum Disulfide for Effective Degradation of Acetaminophen [J]. Chemical Engineering Journal, 2020, 381(5): 732-749.
[58] LIANG H, HUA P, ZHOU Y, et al. Fabrication of Cu/rGO/MoS2 Nanohybrid with Energetic Visible-Light Response for Degradation of Rhodamine B [J]. Chinese Chemical Letters, 2019, 30(12): 2245-2248.
[59] ZENG Z, YE S, WU H, et al. Research on the Sustainable Efficacy of g-MoS2 Decorated Biochar Nanocomposites for Removing Tetracycline Hydrochloride from Antibiotic-Polluted Aqueous Solution [J]. Science of the Total Environment, 2019, 648(9): 206-217.
[60] ZHAO Y, WU R, YU H, et al. Magnetic Solid-Phase Extraction of Sulfonamide Antibiotics in Water and Animal-Derived Food Samples Using Core-Shell Magnetite and Molybdenum Disulfide Nanocomposite Adsorbent [J]. Journal of Chromatography A, 2020, 10(4): 1783-1795.
[61] WANG H, LI X, GE Q, et al. A Multifunctional Fe2O3@MoS2@SDS Z-scheme Nanocomposite: NIR Enhanced Bacterial Inactivation, Degradation Antibiotics and Inhibiting ARGs Dissemination [J]. Colloids and Surfaces B, Biointerfaces, 2022, 219(11): 2833-2841.
[62] KANG J, JIN C, LI Z, et al. Dual Z-scheme MoS2/g-C3N4/Bi24O31Cl10 Ternary Heterojunction Photocatalysts for Enhanced Visible-Light Photodegradation of Antibiotic [J]. Journal of Alloys and Compounds, 2020, 72(10): 813-825.
[63]LIU N, HUANG W, TANG M, et al. In-Situ Fabrication of Needle-Shaped MIL-53(Fe) with 1T-MoS2 and Study on Its Enhanced Photocatalytic Mechanism of Ibuprofen [J]. Chemical Engineering Journal, 2019, 39(4): 254-264.
[64] ZHOU H, LAI L, WAN Y, et al. Molybdenum Disulfide (MoS2): A Versatile Activator of both Peroxymonosulfate and Persulfate for the Degradation of Carbamazepine [J]. Chemical Engineering Journal, 2020, 38(4): 762-771.
[65] ZENG L, LI X, FAN S, et al. Insight into MoS2 Synthesis with Biophotoelectrochemical Engineering and Applications in Levofloxacin Elimination [J]. ACS Applied Energy Materials, 2018, 1(8): 3752-3762.
[66] OTHMAN N H, FUZIL N S, ALIAS N H, et al. Fabrication of MoS2-rGO and MoS2 -ZIF-8 Membranes Supported on Flat Alumina Substrate for Effective Oil Removal [J].Emergent Materials, 2022, 5(4): 1169-1182.
[67] DENG X, LIANG X, NG S-P, et al. Adsorption of Formaldehyde on Transition Metal Doped Monolayer MoS2 : A DFT study [J]. Applied Surface Science, 2019, 48(4): 1244-1252.
[68] ZOU W, ZHAO C, ZHANG X, et al. Mitigation Effects and Associated Mechanisms of Environmentally Relevant Thiols on the Phytotoxicity of Molybdenum Disulfide Nanosheets [J]. Environmental Science & Technology, 2022, 23(4): 532-537.
[69] WANG Z Y, SIM A, URBAN J J, et al. Removal and Recovery of Heavy Metal Ions by Two-dimensional MoS2 Nanosheets: Performance and Mechanisms [J]. Environmental Science & Technology, 2018, 52(17): 9741-9748.
[70] KHAN Z H, GAO M, QIU W, et al. Properties and Adsorption Mechanism of Magnetic Biochar Modified with Molybdenum Disulfide for Cadmium in Aqueous Solution [J]. Chemosphere, 2020, 25(5): 128-142.
[71] ZHANG X, LIU Y. Nanomaterials for Radioactive Wastewater Decontamination [J]. Environmental Science-Nano, 2020, 7(4): 1008-1040.
[72] ZHAO Q, ZHANG Z, OUYANG X. Adsorption of Radionuclides on the Monolayer MoS2 [J]. Materials Research Express, 2018, 5(4): 873-881.
[73] ZHANG Z, ZHAO Q, HUANG M, et al. Chemisorption of Metallic Radionuclides on a Monolayer MoS2 Nanosheet [J]. Nanoscale Advances, 2019, 1(1): 114-121.
[74] WANG J, YANG S, CHENG G, et al. The Adsorption of Europium and Uranium on the Sodium Dodecyl Sulfate Modified Molybdenum Disulfide Composites [J]. Journal of Chemical and Engineering Data, 2020, 65(4): 2178-2185.
[75] WU M-H, LI L, XUE Y-C, et al. Fabrication of Ternary GO/g-C3N4/MoS2 Flower-like Heterojunctions with Enhanced Photocatalytic Activity for Water Remediation [J]. Applied Catalysis B-Environmental, 2018, 22(8): 103-112.
[76] ZHANG Z, LIU C, DONG Z, et al. Synthesis of Flower-like MoS2/g-C3N4 Nanosheet Heterojunctions with Enhanced Photocatalytic Reduction Activity of Uranium(VI) [J]. Applied Surface Science, 2020, 5(20): 637-645.
[77] KHAN Z H, GAO M, QIU W, et al. Efficient As(III) Removal by Novel MoS2-Impregnated Fe-Oxide-Biochar Composites: Characterization and Mechanisms [J]. ACS Omega, 2020, 5(22): 13224-13235.
[78] ZHANG L, HE X, ZHOU Q, et al. Fabrication of 1T-MoS2 Nanosheets and the High-Efficiency Removal of Toxic Metals in Aquatic Systems: Performance and Mechanisms [J]. Chemical Engineering Journal, 2020, 38(6): 823-842.
[79] MAGGIE A. Water and Sanitation in Developing Countries: Including Health in the Equation. Montgomery, Menachem Elimelech [J]. Environmental Science andTechnology, 2007, 4(1): 17-24.
[80] TONG S, DENG H, WANG L, et al. Multi-Functional Nanohybrid of Ultrathin Molybdenum Disulfide Nanosheets Decorated with Cerium Oxide Nanoparticles for Preferential Uptake of Lead (II) Ions [J]. Chemical Engineering Journal, 2018, 33(5): 22-31.
[81] WANG Y, NI J, CHEN P, et al. First-Principles Study of X(O, Se, Te)-doped Monolayer MoS2 for Hg-0 Adsorption [J]. Physica E-Low-Dimensional Systems & Nanostructures, 2021, 127(5): 3837-3844.
[82] KUMAR N, FOSSO-KANKEU E, RAY S S. Achieving Controllable MoS2 Nanostructures with Increased Interlayer Spacing for Efficient Removal of Pb(II) from Aquatic Systems [J]. ACS Applied Materials & Interfaces, 2019, 11(21): 19141-19155.
[83] ZHU H, TAN X, TAN L, et al. Biochar Derived from Sawdust Embedded with Molybdenum Disulfide for Highly Selective Removal of Pb2+ [J]. ACS Applied Nano Materials, 2018, 1(6): 2689-2698.
[84] LUO J, FU K, SUN M, et al. Phase-Mediated Heavy Metal Adsorption from Aqueous Solutions Using Two-Dimensional Layered MoS2 [J]. ACS Applied Materials & Interfaces, 2019, 11(42): 38789-38797.
[85] HWANG J-H, ISLAM M A, CHOI H, et al. Improving Electrochemical Pb2+ Detection Using a Vertically Aligned 2D MoS2 Nanofilm [J]. Analytical Chemistry, 2019, 91(18): 11770-11777.
[86] LIU H, LIU C, XIANG K, et al. Disordered MoS2 Nanosheets with Widened Interlayer Spacing for Elemental Mercury Adsorption from Nonferrous Smelting Flue Gas [J]. Acs Es&T Engineering, 2021, 1(8): 1258-1266.
[87] NAIR J S A, SAISREE S, SANDHYA K Y. Ultra-Rapid Removal of Pb(II) Ions by a Nano-MoS2 Decorated Graphene Aided by the Unique Combination of Affinity and Electrochemistry [J]. Advanced Sustainable Systems, 2022, 6(7): 913-922.
[88] WANG J, ZHANG W, YUE X, et al. One-Pot Synthesis of Multifunctional Magnetic Ferrite-MoS2 -Carbon Dot Nanohybrid Adsorbent for Efficient Pb(II) Removal [J]. Journal of Materials Chemistry A, 2016, 4(10): 3893-3900.
[89] AGHAGOLI M J, SHEMIRANI F. Hybrid Nanosheets Composed of Molybdenum Disulfide and Reduced Graphene Oxide for Enhanced Solid Phase Extraction of Pb(II) and Ni(II) [J]. Microchimica Acta, 2017, 184(1): 237-244.
[90] YUAN W, KUANG J, YU M, et al. Facile Preparation of MoS2@Kaolin Composite by One-Step Hydrothermal Method for Efficient Removal of Pb(II) [J]. Journal of Hazardous Materials, 2021, 405(2): 220-228.
[91] WANG Y, XU H, ZHAO X, et al. Alkynyl Functionalized MoS2 Mesoporous Materials with Superb Adsorptivity for Heavy Metal Ions [J]. Journal of Hazardous Materials, 2022, 424(9): 328-346.
[92] CARPER J. The CRC Handbook of Chemistry and Physics [J]. Library Journal, 1999, 124(10): 192-207.
[93] NIE K, QU X, GAO D, et al. Engineering Phase Stability of Semimetallic MoS2 Monolayers for Sustainable Electrocatalytic Hydrogen Production [J]. Acs Applied Materials & Interfaces, 2022, 14(17): 19847-19856.
[94] RAHMAN M H, CHOWDHURY E H, HONG S. High Temperature Oxidation of Monolayer MoS2 and Its Effect on Mechanical Properties: A ReaxFF Molecular Dynamics Study [J]. Surfaces and Interfaces, 2021, 26(13): 147-275.
[95] YAMAMOTO M, EINSTEIN T L, FUHRER M S, et al. Anisotropic Etching of Atomically Thin MoS2 [J]. Journal of Physical Chemistry C, 2013, 117(48): 25643-25649.
[96] QU X, ALVAREZ P, LI Q. Photochemical Transformation of Carboxylated Multiwalled Carbon Nanotubes: Role of Reactive Oxygen Species [J]. Environmental Science & Technology, 2013, 47(24): 14080-14088.
[97] YANG S, TIAN H, HILL M R, et al. Effect and Regulation Mechanism of Oxidation Degrees on the O-MoS2 Structure and Separation Performance of Nanofiltration Membrane [J]. Journal of Membrane Science, 2021, 635(11): 3649-3655.
[98] YANG H I, CHOI W. Capacitance-Voltage Measurements of Monolayer MoS2 Metal-Oxide-Semiconductor Capacitors [J]. Microelectronic Engineering, 2021, 238(2): 656-660.
[99] ZOU W, ZHOU Q, ZHANG X, et al. Dissolved Oxygen and Visible Light Irradiation Drive the Structural Alterations and Phytotoxicity Mitigation of Single-Layer Molybdenum Disulfide [J]. Environmental Science & Technology, 2019, 53(13): 7759-7769.
[100]ZHOU Y, LIU B, YANG R, et al. Filling in the Gaps between Nanozymes and Enzymes: Challenges and Opportunities [J]. Bioconjugate Chemistry, 2017, 28(12): 2903-2909.
[101]HUANG Y, REN J, QU X. Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications [J]. Chemical Reviews, 2019, 119(6): 4357-4412.
[102]ZHU X, WANG Z, GAO M, et al. AgPt/MoS2 Hybrid as Electrochemical Sensor for Detecting H2O2 Release from Living Cells [J]. New Journal of Chemistry, 2022, 46(31): 15032-15041.
[103]REHMAN F, SAYED M, KHAN J A, et al. Degradation of Crystal Violet Dye by Fenton and Photo-Fenton Oxidation Processes [J]. Zeitschrift Fur Physikalische Chemie-International Journal of Research in Physical Chemistry & Chemical Physics, 2018, 232(12): 1771-1786.
[104]DOU X, ZHANG Q, SHAH S N A, et al. MoS2-Quantum Dot Triggered Reactive Oxygen Species Generation and Depletion: Responsible for Enhanced Chemiluminescence [J]. Chemical Science, 2019, 10(2): 497-500.
[105]KONG L, FANG G, KONG Y, et al. Cu2O@beta-Cyclodextrin as a Synergistic Catalyst for Hydroxyl Radical Generation and Molecular Recognitive Destruction of Aromatic Pollutants at Neutral pH [J]. Journal of Hazardous Materials, 2018, 35(7): 109-118.
[106]LI Q, HU B, YANG Q, et al. Interaction Mechanism between Multi-Layered MoS2 and H2O2 for Self-Generation of Reactive Oxygen Species [J]. Environmental Research, 2020, 19(1): 761-778.
[107]LEI D, SHAN L, YANG L, et al. Spontaneous Exfoliation and Tailoring of MoS2 in Mixed Solvents [J]. Chemical Communications, 2014, 50(100): 15936-15939.
[108]SHAKYA J, KUMAR S, MOHANTY T. Role of Oxygen Adsorption in Modification of Optical and Surface Electronic Properties of MoS2 [J]. Journal of Applied Physics, 2018, 123(16): 573-569.
[109]GUARDIA L, PAREDES J I, MUNUERA J M, et al. Chemically Exfoliated MoS2 Nanosheets as an Efficient Catalyst for Reduction Reactions in the Aqueous Phase [J]. ACS Applied Materials & Interfaces, 2014, 6(23): 21702-21710.
[110]WANG Z, VON DEM BUSSCHE A, QIU Y, et al. Chemical Dissolution Pathways of MoS2 Nanosheets in Biological and Environmental Media [J]. Environmental Science& Technology, 2016, 50(13): 7208-7217.
[111]SANTOSH K C, LONGO R C, WALLACE R M, et al. Surface Oxidation Energetics and Kinetics on MoS2 Monolayer [J]. Journal of Applied Physics, 2015, 117(13): 270-283.
[112]LUO H, CHENG Y, ZENG Y, et al. Enhanced Decomposition of H2O2 by Molybdenum Disulfide in a Fenton-like Process for Abatement of Organic Micropollutants [J]. Science of the Total Environment, 2020, 73(2): 921-933.
[113]REN Y, LIN L, MA J, et al. Sulfate Radicals Induced from Peroxymonosulfate by Magnetic Ferrospinel MFe2O4 (M = Co, Cu, Mn, and Zn) as Heterogeneous Catalysts in the Water [J]. Applied Catalysis B-Environmental, 2015, 16(5): 572-578.
[114]LI X, HUANG X, XI S, et al. Single Cobalt Atoms Anchored on Porous N-Doped Graphene with Dual Reaction Sites for Efficient Fenton-like Catalysis [J]. Journal of the American Chemical Society, 2018, 140(39): 12469-12475.
[115]CHEN Y, ZHANG G, JI Q, et al. Triggering of Low-Valence Molybdenum in Multiphasic MoS2 for Effective Reactive Oxygen Species Output in Catalytic Fenton-like Reactions [J]. ACS Applied Materials & Interfaces, 2019, 11(30): 26781-26788.
[116]JAYABAL S, WU J, CHEN J, et al. Metallic 1T-MoS2 Nanosheets and their Composite Materials: Preparation, Properties and Emerging Applications [J]. Materials Today Energy, 2018, 10(2): 64-79.
[117]ZHOU J, JI X, ZHOU X, et al. Three-Dimensional g-C3N4 /MgO Composites as a High-Performance Adsorbent for Removal of Pb(II) from Aqueous Solution [J]. Separation Science and Technology, 2019, 54(17): 2817-2829.
[118]EL GARAH M, BERTOLAZZI S, IPPOLITO S, et al. MoS2 Nanosheets via Electrochemical Lithium-Ion Intercalation under Ambient Conditions [J]. Flatchem, 2018, 9(2): 33-39.
[119]SALINI A N J, RAMACHANDRAN A, SADASIVAKURUP S, et al. Versatile MoS2 Hollow Nanoroses for a Quick-Witted Removal of Hg(II), Pb(II) and Ag(I) from Water and the Mechanism: Affinity or Electrochemistry? [J]. Applied Materials Today, 2020, 20(3): 698-706.
[120]LIU B, HAN Q, LI L, et al. Synergistic Effect of Metal Cations and Visible Light on 2D MoS2 Nanosheet Aggregation [J]. Environmental Science & Technology, 2021, 55(24): 16379-16389.
[121]MAK K F, LEE C, HONE J, et al. Atomically Thin MoS2 : A New Direct-Gap Semiconductor [J]. Physical Review Letters, 2010, 105(13): 2-5.
[122]SANDOVAL S J, YANG D, FRINDT R F, et al. Raman-Study and Lattice-Dynamics of Single Molecular Layers of MoS2 [J]. Physical Review B, 1991, 44(8): 3955-3962.
[123]KAPPERA R, VOIRY D, YALCIN S E, et al. Phase-Engineered Low-Resistance Contacts for Ultrathin MoS2 Transistors [J]. Nature Materials, 2014, 13(4): 1128-1134.
[124]WANG H, LU Z, XU S, et al. Electrochemical Tuning of Vertically Aligned MoS2 Nanofilms and its Application in Improving Hydrogen Evolution Reaction [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(49): 19701-19706.
[125]JOENSEN P, CROZIER E D, ALBERDING N, et al. A Study of Single-Layer and Restacked MoS2 by X-ray-Diffraction and X-ray Absorption-Spectroscopy [J]. Journal of Physics C-Solid State Physics, 1987, 20(26): 4043-4053.
[126]LIU Q, LI X, HE Q, et al. Gram-Scale Aqueous Synthesis of Stable Few-Layered 1T-MoS2 : Applications for Visible-Light-Driven Photocatalytic Hydrogen Evolution [J]. Small, 2015, 11(41): 5556-5564.
[127]ZHANG D, ZHANG P, YI J, et al. XRD Simulation Study of Doped LiFePO4 [J]. Journal of Alloys and Compounds, 2011, 509(4): 1206-1210.
[128]GARCIA-DALI S, PAREDES J I, MUNUERA J M, et al. Aqueous Cathodic Exfoliation Strategy toward Solution-Processable and Phase-Preserved MoS2 Nanosheets for Energy Storage and Catalytic Applications [J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36991-37003.
[129]ISOKISE E M, ABDULLAH A H, PING T Y. Sequestration of Pb(II) from Aqueous Environment by Palm Kernel Shell Activated Carbon: Isotherm and Kinetic Analyses [J]. Pertanika Journal of Science and Technology, 2021, 29(3): 1517-1534.
[130]BEYAN S M, AMBIO T A, SUNDRAMURTHY V P, et al. Adsorption Phenomenon for Removal of Pb(II) via Teff Straw based Activated Carbon Prepared by Microwave-Assisted Pyrolysis: Process Modelling, Statistical Optimisation, Isotherm, Kinetics, and Thermodynamic Studies [J]. International Journal of Environmental Analytical Chemistry, 2022, 27(6): 247-262.
[131]PAM A A, HIR Z A M, ABDULLAH A H, et al. Pb(II) Removal in Water via Adsorption onto Deep Eutectic Solvent Fabricated Activated Carbon [J]. Applied Water Science, 2021, 11(6): 673-681.
[132]WANG Z, XU J, YELLEZUOME D, et al. Effects of Cotton Straw-Derived Biochar Under Different Pyrolysis Conditions on Pb(II) Adsorption Properties in Aqueous Solutions [J]. Journal of Analytical and Applied Pyrolysis, 2021, 157(2): 731-739.
[133]CHEN C, QIU M. High Efficiency Removal of Pb(II) in Aqueous Solution by a Biochar-Supported Nanoscale Ferrous Sulfide Composite [J]. RSC Advances, 2021, 11(2): 953-959.
[134]TAN Y, WAN X, ZHOU T, et al. Novel Zn-Fe Engineered Kiwi Branch Biochar for the Removal of Pb(II) from Aqueous Solution [J]. Journal of Hazardous Materials, 2022, 424(7): 582-587.
[135]LEE T W, CHEN C C, CHEN C. Chemical Stability and Transformation of Molybdenum Disulfide Nanosheets in Environmental Media [J]. Environmental Science and Technology, 2019, 53(11): 6282-6291.
[136]WANG Z, BUSSCHE A V D, QIU Y, et al. Chemical Dissolution Pathways of MoS2 Nanosheets in Biological and Environmental Media [J]. Environmental Science & Technology, 2016, 50(13): 7208-7217.
[137]LIN Y C, DUMCENCON D O, HUANG Y S, et al. Atomic Mechanism of the Semiconducting-to-Metallic Phase Transition in Single-Layered MoS2 [J]. Nature Nanotechnology, 2014, 9(5): 391-396.
[138]WANG Z, MI B. Environmental Applications of 2D Molybdenum Disulfide (MoS2 ) Nanosheets [J]. Environmental Science & Technology, 2017, 51(15): 8229-8244.
[139]PARZINGER E, MILLER B, BLASCHKE B, et al. Photocatalytic Stability of Single- and Few-Layer MoS2 [J]. ACS Nano, 2015, 9(11): 11302-11309.
[140]GUSAIN R, KUMAR N, FOSSO-KANKEU E, et al. Efficient Removal of Pb(II) and Cd(II) from Industrial Mine Water by a Hierarchical MoS2/SH-MWCNT Nanocomposite [J]. ACS Omega, 2019, 4(9): 13922-13935.
[141]TAN L, LIU Y, MENG F, et al. 3D Hierarchical Defect-Rich C@MoS2 Nanosheet Arrays Developed on Montmorillonite with Enhanced Performance in Pb(II) Removal [J]. Environmental Science-Nano, 2020, 7(10): 3088-3099.
[142]ARULMOZHI K T, MYTHILI N. Studies on the Chemical Synthesis and Characterization of Lead Oxide Nanoparticles with Different Organic Capping Agents [J]. AIP Advances, 2013, 3(12): 7253-7271.
[143]PHILLIPS C L, REGIER T Z, PEAK D. Aqueous Cu(II)-Organic Complexation Studied in Situ Using Soft X-ray and Vibrational Spectroscopies [J]. Environmental Science & Technology, 2013, 47(24): 14290-14297.
[144]HANNACHI Y. Characterization of the Biosorption of Lead and Cadmium with the Red Alga [J]. Holistic Approach to Environment, 2018, 63(2): 6322-6334.
[145]NEERAJ, KUMAR, ELVIS, et al. Achieving Controllable MoS2 Nanostructures with Increased Interlayer Spacing for Efficient Removal of Pb(II) from Aquatic Systems [J]. ACS Applied Materials & Interfaces, 2019, 81(12): 3632-3638.
[146]GYAWALI G, ADHIKARI R, JOSHI B, et al. Sonochemical Synthesis of Solar-Light-Driven Ag-PbMoO 4 Photocatalyst [J]. Journal of Hazardous Materials, 2013, 263(1): 45-51.
修改评论